OpenCalphad - a free thermodynamic software

Author:

Sundman Bo,Kattner Ursula R,Palumbo Mauro,Fries Suzana G

Abstract

AbstractThermodynamic data are essential for the understanding, developing, and processing of materials. The CALPHAD (Calculation of Phase Diagrams) technique has made it possible to calculate properties of multicomponent systems using databases of thermodynamic descriptions with models that were assessed from experimental data. A large variety of data, such as phase diagram and solubility data, including consistent thermodynamic values of chemical potentials, enthalpies, entropies, thermal expansions, heats of transformations, and heat capacities, can be obtained from these databases. CALPHAD calculations can be carried out as stand-alone calculations or can be carried out coupled with simulation codes using the result from these calculations as input. A number of CALPHAD software are available for the calculation of properties of multicomponent systems, and the majority are commercial products. The OpenCalphad (OC) software, discussed here, has a simple programming interface to facilitate such integration in application software. This is important for coupling validated thermodynamic as well as kinetic data in such simulations for obtaining realistic results. At present, no other high quality open source software is available for calculations of multicomponent systems using CALPHAD-type models, and it is the goal of the OC source code to fill this gap. The OC software is distributed under a GNU license. The availability of the source code can greatly benefit scientists in academia as well as in industry in the development of new models and assessment of model parameters from both experimental data and data from first principles calculations.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

Reference63 articles.

1. National Science and Technology Council (2011) Materials genome initiative for global competitiveness, Office of Science and Technology Policy, Washington, DC.

2. National Research Council, Committee on Integrated Computational Materials Engineering (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security, National Research Council, Committee on Integrated Computational Materials Engineering, Washington, DC.

3. Olson GB (2014) Preface to the viewpoint set on: The Materials Genome. Scripta Mater 70: 1–2.

4. Kattner UR, Eriksson G, Hahn I, Schmid-Fetzer R, Sundman B, Swamy V, Kussmaul A, Spencer PJ, Anderson TJ, Chart TG, Costa e Silva A, Jansson B, Lee B-J, Schalin M (2000) Use of thermodynamic software in process modelling and new applications of thermodynamic calculations. Calphad 24: 55–94.

5. Olson G (2013) Genomic materials design: The ferrous frontier. Acta Mater 61: 771–781.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3