Microstructure reconstruction and structural equation modeling for computational design of nanodielectrics

Author:

Zhang Yichi,Zhao He,Hassinger Irene,Brinson L. Catherine,Schadler Linda S.,Chen Wei

Abstract

AbstractNanodielectric materials, consisting of nanoparticle-filled polymers, have the potential to become the dielectrics of the future. Although computational design approaches have been proposed for optimizing microstructure, they need to be tailored to suit the special features of nanodielectrics such as low volume fraction, local aggregation, and irregularly shaped large clusters. Furthermore, key independent structural features need to be identified as design variables. To represent the microstructure in a physically meaningful way, we implement a descriptor-based characterization and reconstruction algorithm and propose a new decomposition and reassembly strategy to improve the reconstruction accuracy for microstructures with low volume fraction and uneven distribution of aggregates. In addition, a touching cell splitting algorithm is employed to handle irregularly shaped clusters. To identify key nanodielectric material design variables, we propose a Structural Equation Modeling approach to identify significant microstructure descriptors with the least dependency. The method addresses descriptor redundancy in the existing approach and provides insight into the underlying latent factors for categorizing microstructure. Four descriptors, i.e., volume fraction, cluster size, nearest neighbor distance, and cluster roundness, are identified as important based on the microstructure correlation functions (CF) derived from images. The sufficiency of these four key descriptors is validated through confirmation of the reconstructed images and simulated material properties of the epoxy-nanosilica system. Among the four key descriptors, volume fraction and cluster size are dominant in determining the dielectric constant and dielectric loss.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

Reference57 articles.

1. Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications, two-volume set., Academic Press, Waltham, Massachusetts, USA

2. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Zur Loye HC (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4), 1697–1733

3. McPherson JW, Kim J, Shanware A, Mogul H, Rodriguez J (2003) Trends in the ultimate breakdown strength of high dielectric-constant materials. Electron Devices, IEEE Transactions on, 50(8):1771–1778

4. Ding HZ, Varlow BR (2004) Effect of nano-fillers on electrical treeing in epoxy resin subjected to AC voltage. In: Electrical Insulation and Dielectric Phenomena, 2004. CEIDP'04. 2004 Annual Report Conference on. IEEE, pp 332–335

5. Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3