Author:
Zhang Yichi,Zhao He,Hassinger Irene,Brinson L. Catherine,Schadler Linda S.,Chen Wei
Abstract
AbstractNanodielectric materials, consisting of nanoparticle-filled polymers, have the potential to become the dielectrics of the future. Although computational design approaches have been proposed for optimizing microstructure, they need to be tailored to suit the special features of nanodielectrics such as low volume fraction, local aggregation, and irregularly shaped large clusters. Furthermore, key independent structural features need to be identified as design variables. To represent the microstructure in a physically meaningful way, we implement a descriptor-based characterization and reconstruction algorithm and propose a new decomposition and reassembly strategy to improve the reconstruction accuracy for microstructures with low volume fraction and uneven distribution of aggregates. In addition, a touching cell splitting algorithm is employed to handle irregularly shaped clusters. To identify key nanodielectric material design variables, we propose a Structural Equation Modeling approach to identify significant microstructure descriptors with the least dependency. The method addresses descriptor redundancy in the existing approach and provides insight into the underlying latent factors for categorizing microstructure. Four descriptors, i.e., volume fraction, cluster size, nearest neighbor distance, and cluster roundness, are identified as important based on the microstructure correlation functions (CF) derived from images. The sufficiency of these four key descriptors is validated through confirmation of the reconstructed images and simulated material properties of the epoxy-nanosilica system. Among the four key descriptors, volume fraction and cluster size are dominant in determining the dielectric constant and dielectric loss.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,General Materials Science
Reference57 articles.
1. Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications, two-volume set., Academic Press, Waltham, Massachusetts, USA
2. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Zur Loye HC (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4), 1697–1733
3. McPherson JW, Kim J, Shanware A, Mogul H, Rodriguez J (2003) Trends in the ultimate breakdown strength of high dielectric-constant materials. Electron Devices, IEEE Transactions on, 50(8):1771–1778
4. Ding HZ, Varlow BR (2004) Effect of nano-fillers on electrical treeing in epoxy resin subjected to AC voltage. In: Electrical Insulation and Dielectric Phenomena, 2004. CEIDP'04. 2004 Annual Report Conference on. IEEE, pp 332–335
5. Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献