Author:
Correa Dixon M,Seepersad Carolyn Conner,Haberman Michael R
Abstract
AbstractA mechanical system exhibits negative stiffness when it requires a decrease in applied force to generate an increase in displacement. Negative stiffness behavior has been of interest for use in vibro-acoustic damping materials, vibration isolation mechanisms, and mechanical switches. This non-intuitive mechanical response can be elicited by transversely loading a curved beam structure of appropriate geometry, which can be designed to exhibit either one or two stable positions. The current work investigates honeycomb structures whose unit cells are created from curved beam structures that are designed to provide negative stiffness behavior and a single stable position. These characteristics allow the honeycomb to absorb large amounts of mechanical energy at a stable plateau stress, much like traditional honeycombs. Unlike traditional honeycombs, however, the mechanism underlying energy-absorbing behavior is elastic buckling rather than plastic deformation, which allows the negative stiffness honeycombs to recover from large deformations. Accordingly, they are compelling candidates for applications that require dissipation of multiple impacts. A detailed exploration of the unit cell design shows that negative stiffness honeycombs can be designed to dissipate mechanical energy in quantities that are comparable to traditional honeycomb structures at low relative densities. Furthermore, their unique cell geometry allows the designer to perform trade-offs between density, stress thresholds, and energy absorption capabilities. This paper describes these trade-offs and the underlying analysis.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,General Materials Science
Reference12 articles.
1. Gibson L, Ashby M (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge, UK
2. Hayes A, Wang A, Dempsey B, McDowell D (2004) Mechanics of linear cellular alloys. Mech Mater 36:691–713
3. Schaedler T, Jacobsen A, Torrents A, Sorensen A, Lian J, Greer J, Valdevit L, Carter W (2011) Ultralight metallic microlattices. Science 334(6058):962–965
4. Correa D, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2014) Negative stiffness honeycombs for recoverable shock isolation. In: Proceedings of the solid freeform fabrication symposium. The University of Texas at Austin, Austin, TX
5. Correa D, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献