Author:
Baudisch Christoph,Assadian Ojan,Kramer Axel
Abstract
Abstract
Background
Quantitative measurements of mould enrichment of indoor air or house dust might be suitable surrogates to evaluate present but hidden moisture damage. Our intent was to develop a house-dust monitoring method to detect hidden moisture damage excluding the influence of outdoor air, accumulated old dust, and dust swirled up from room surfaces.
Methods
Based on standardized measurement of mould spores in the 63-μm fraction of house dust yielded by carpets, the background concentrations were determined and compared to simultaneously obtained colony numbers and total spore numbers of the indoor air in 80 non-mouldy living areas during summer and winter periods. Additionally, sampling with a vacuum-cleaner or manual sieve was compared to sampling with a filter holder or sieving machine, and the evaluative power of an established two-step assessment model (lower and upper limits) was compared to that of a one-step model (one limit) in order to derive concentration limits for mould load in house dust.
Results
Comparison with existing evaluation procedures proved the developed method to be the most reliable means of evaluating hidden moisture damage, yielding the lowest false-positive results (specificity 98.7%). Background measurements and measurements in 14 mouldy rooms show that even by evaluating just the indicator genera in summer and winter, a relatively certain assessment of mould infestation is possible.
Conclusion
A one-step evaluation is finally possible for house dust. The house-dust evaluation method is based on analysis of the indicator genera Aspergillus, Eurotium and Penicillium spp., which depend on the total fungal count. Inclusion of further moisture indicators currently appears questionable, because of outdoor air influence and the paucity of measurements.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献