Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities

Author:

Borkowski Maciej,Podaima Blake W,McLeod Robert D

Abstract

Abstract Background This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. Methods As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. Results An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. Conclusion This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference42 articles.

1. Andersson H, Britton T: Stochastic epidemic models and their statistical analysis. Lecture Notes in Statistics. 2000, 151: ISBN: 978-0-387-95050-1

2. Carrat J, Luong J, Lao H, Sallé A, Lajaunie C, Wackernage H: A 'small-world-like' model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Medicine. 2006

3. Mitacs Project: Biomedical & Health: Transmission dynamics and spatial spread of infectious diseases: Modeling, prediction and control. [http://www.mitacs.ca/main.php?mid=10000015&pid=75&proid=28]

4. Li Z, Hayse J, Hlohowskyj I, Smith K, Smith R: An Agent-based Model for Simulation of West Nile Virus Transmission. (Proceedings of Agent 2005 Conference on Generative Social Processes, Model, and Mechanisms, Chicago, IL, October 13-15, 2005). [http://www.mathstat.uottawa.ca/~rsmith/AgentbasedmodelWNV.pdf]

5. Epstein JM: Artificial society: getting clues on how a pandemic might happen by creating a huge model of the United States. [http://www.brookings.edu/interviews/2008/0402_agent_based_epstein.aspx]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3