Evaluation of tropospheric ozone reanalyses with independent ozonesonde observations in East Asia

Author:

Park Sunmin,Son Seok-Woo,Jung Myung-Il,Park Jinkyung,Park Sang Seo

Abstract

AbstractThe modern reanalysis datasets provide not only meteorological variables, but also atmospheric chemical compositions such as tropospheric ozone and aerosol concentration. However, the quality of chemical compositions has been rarely assessed especially over East Asia. To better understand the characteristics of reanalysis datasets on regional scale, the present study evaluates tropospheric ozone derived from seven reanalyses against five independent ozonesonde observations in East Asia. The reanalysis datasets are the ECMWF Reanalysis 5th (ERA5), Monitoring Atmospheric Composition and Climate reanalysis (MACCRA), Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA), as well as the NCEP Climate Forecast System Reanalysis (CFSR), NASA Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2), Japanese 55-year Reanalysis (JRA-55), and updated Tropospheric Chemistry Reanalysis (TCR-2). It turns out that MACCRA, CAMSRA, and TCR-2, which incorporate chemical transport model, depict most reasonable spatio-temporal variability of tropospheric ozone in East Asia. The MACC exhibits a better quality with relatively small mean biases of 6.4 ± 1.3% in tropospheric column ozone than biases of 7.8 ± 2.7% and 7.8 ± 2.8% for CAMSRA and TCR-2. The CAMSRA further shows a significant monthly correlation with the observation of up to 0.7 at 850 hPa. Among the seven reanalyses, MACC, CAMSRA, and TCR-2 are suitable for local tropospheric ozone study on seasonal to inter-annual time scales. However, none of the seven reanalysis datasets reproduce the observed trend of tropospheric ozone. This result suggests that even the latest datasets are inadequate for the long-term ozone change study.

Funder

Korea Meteorological Administration

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3