CMIP6 model-based analog forecasting for the seasonal prediction of sea surface temperature in the offshore area of China

Author:

Peng Weiying,Chen Quanliang,Zhou Shijie,Huang PingORCID

Abstract

AbstractSeasonal forecasts at lead times of 1–12 months for sea surface temperature (SST) anomalies (SSTAs) in the offshore area of China are a considerable challenge for climate prediction in China. Previous research suggests that a model-based analog forecasting (MAF) method based on the simulations of coupled global climate models provide skillful climate forecasts of tropical Indo-Pacific SSTAs. This MAF method selects the model-simulated cases close to the observed initial state as a model-analog ensemble, and then uses the subsequent evolution of the SSTA to generate the forecasts. In this study, the MAF method is applied to the offshore area of China (0°–45°N, 105°–135°E) based on the simulations of 23 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) for the period 1981–2010. By optimizing the key factors in the MAF method, we suggest that the optimal initial field for the analog criteria should be concentrated in the western North Pacific. The multi-model ensemble of the optimized MAF prediction using these 23 CMIP6 models shows anomaly correlation coefficients exceeding 0.6 at the 3-month lead time, which is much improved relative to previous SST-initialized hindcasts and appears practical for operational forecasting.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Barnston AG, Tippett MK, Ranganathan M, L’Heureux ML (2019) Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Clim Dyn 53:7215–7234. https://doi.org/10.1007/s00382-017-3603-3

2. Cai R, Chen J, Huang R (2006) The response of marine environment in the offshore area of China and its adjacent ocean to recent global climate change. Chin J Atmos Sci 30:1019–1033 (in Chinese)

3. Cai R, Chen J, Tan H (2011) Variations of the sea surface temperature in the offshore area of China and their relationship with the East Asian monsoon under the global warming. Clim Environ Res 16:95–104 (in Chinese)

4. Cao J, Lu R, Hu J, Wang H (2013) Spring Indian Ocean-western Pacific SST contrast and the East Asian summer rainfall anomaly. Adv Atmos Sci 30:1560–1568. https://doi.org/10.1007/s00376-013-2298-6

5. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. https://doi.org/10.1175/2007mwr1978.1

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3