Potential for tsunami detection via CCTV cameras in northeastern Toyama Prefecture, Japan, following the 2024 Noto Peninsula earthquake

Author:

Shirai Tomoki,Enomoto Yota,Haga Keisuke,Tokuta Tatsuhiko,Arikawa TaroORCID,Mori Nobuhito,Imamura Fumihiko

Abstract

AbstractThis study explored closed-circuit television (CCTV) networks in northeastern Toyama Prefecture, Japan, as a new data source for tsunami detection following the 2024 Noto Peninsula earthquake. We analyzed CCTV footage and extracted time-series water level fluctuations at Yokoyama, Shimoiino, and Ekko. Spectral analysis of these waveforms revealed several long-period peaks (more than 100 s) in power spectral density (PSD), suggesting the presence of tsunami components. Notably, relatively large PSD peaks at approximately 5–10 min were observed at all CCTV locations in this study and at offshore wave observation points (Tanaka and Toyama). At Yokoyama, a maximum run-up of approximately 3 m was confirmed around 16:28. Although water level fluctuations at Shimoiino and Ekko were detected, identifying tsunami components proved challenging due to their small magnitude compared to other wave components. Despite these challenges, this study demonstrates the potential of CCTV networks for tsunami detection, and further research is needed to achieve real-time detection.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3