Benefits of radar-derived surface current assimilation for South of Africa ocean circulation

Author:

Couvelard XavierORCID,Messager Christophe,Penven Pierrick,Smet Sébastien,Lattes Philippe

Abstract

AbstractThe oceanic circulation south of Africa is characterised by a complex dynamics with a strong variability due to the presence of the Agulhas current and numerous eddies. This area of interest is also the location of several natural gas fields under seafloor which are targeted for drilling and exploitation. The complex and powerful ocean currents induces significant issues for ship operations at the surface as well as under the surface for deep sea operations. Therefore, the knowledge of the state of the currents and the ability to forecast them in a realistic manners could greatly enforce the safety of various marine operation. Following this objective, an array of HF radar systems were deployed to allow a detailed knowledge of the Agulhas currents and its associated eddy activity. It is shown in this study that assimilation of HF radar allow to represent the surface circulation more realistically. Two kind of experiments have been performed, a one month analysis and nine consecutive forecast of two days each. The one month 4DVAR experiment have been compared to geostrophic currents issued from altimeters and highlight an important improvement of the geostrophic currents. Furthermore despite the restricted size of the area covered with HF radar, we show that the solution is improved almost in the whole domain, mainly upstream and downstream of the HF radar’s covered area. We also show that while benefits of the assimilation on the surface current intensity is significantly reduced during the second day of forecast, the correction in direction persists after 48 h.

Funder

EXWEXs

TEPSA

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3