Geochemical approaches in tsunami research: current knowledge and challenges

Author:

Shinozaki TetsuyaORCID

Abstract

AbstractOver the past decade or so, geochemical techniques have been applied to the study of modern and past tsunamis. Seawater incursions and the introduction of marine organic matter can be detected through geochemical analysis, providing strong evidence that an event deposit was formed by saltwater inundation. Furthermore, the marine geochemical signature of an event may reveal the full extent of tsunami inundation far more precisely than can be obtained from sediment alone. Based mainly on literature published during the last 4 years, this paper summarizes the latest advances in and some problems with tsunami geochemical research, and specifically addresses organic and inorganic proxies with high preservation potential, geochemical characteristics of invisible tsunami deposits, handling of data from core scanners, and offshore environmental impacts. Recent studies have proposed that some organic and inorganic geochemical proxies have high preservation potential, and sometimes such evidence can be recognized from invisible tsunami deposits. Quantitative assessments of biomarkers are also effective for detecting allochthonous materials. Organic and inorganic proxies can be applied both to identify tsunami deposits and to accurately reconstruct tsunami inundation areas; however, there are as yet no universal criteria for accurate reconstruction of tsunami inundation areas by detecting invisible tsunami deposits using geochemical approaches. For deeper understanding of the behavior of geochemical characteristics derived from tsunami events, additional knowledge of the geochemical substances associated with modern and paleo-tsunami events is required. Specifically, further work is required on assessment of the environmental selectivity of geochemical proxies and refinement of core-scanner analysis for both organic and inorganic substances.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3