Author:
Pakoksung K.,Suppasri A.,Muhari A.,Syamsidik ,Imamura F.
Abstract
AbstractFollowing the eruption of Mount Anak Krakatau, a considerable landslide occurred on the southwestern part of the volcano and, upon entering the sea, generated a large tsunami within the Sunda Strait, Indonesia, on December 22, 2018. This tsunami traveled ~ 5 km across the strait basin and inundated the shorelines of Sumatra and Java with a vertical runup reaching 13 m. Following the event, observed field data, GPS measurements of the inundation, and multibeam echo soundings of the bathymetry within the strait were collected and publicly provided. Using this dataset, numerical modeling of the tsunami was conducted using the two-layer (soil and water) TUNAMI-N2 model based on a combination of landslide sources and bathymetry data. The two-layer model was implemented to nest the grid system using the finest grid size of 20 m. To constrain the unknown landslide parameters, the differential evolution (DE) global optimization algorithm was applied, which resulted in a parameter set that minimized the deviation from the measured bathymetry after the event. The DE global optimization procedure was effective at determining the landslide parameters for the model with the minimum deviation from the measured seafloor. The lowest deviation from the measured bathymetry was obtained for the best-fitting parameters: a maximum landslide thickness of 301.2 m and a landslide time of 10.8 min. The landslide volume of 0.182 km3 estimated by the best-fitting parameters shows that the tsunami flow depth could have reached 3–10 m along the shore with a K value of 0.89, although the simulated flow depths were underestimated in comparison with the observation data. According to the waveforms, the general wave pattern was well reproduced at tide gauges during the event. A large number of objective function evaluations were necessary to locate the minimum with the DE procedure to fix the grid cell size to 20 m; this limited the accuracy of the obtained parameter values for the two-layer model. Moreover, considering the generalizations in the modeling of landslide movements, the impact landslide time and thickness must be carefully calculated to obtain a suitable accuracy.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference52 articles.
1. Aburaya T, Imamura F (2002) The proposal of a tsunami run-up simulation using combined equivalent roughness. Annu J Coast Ocean Eng 49:276–280 (in Japanese)
2. Aida I (1978) Reliability of a tsunami source model derived from fault parameters. J Phys Earth 26:57–73
3. Baba T, Allgeyer S, Hossen J, Cummins PR, Tsushima H, Imai K, Yamashita K, Kato T (2017) Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Model 111:46–54
4. Choi B, Pelinovsky E, Kim K, Lee J (2003) Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption, Copernicus Publications on behalf of the European Geosciences Union. Natural Hazards and Earth System Science 3(5):321–332
5. Copeland R (2000) Determinate of flow resistance coefficient due to shrubs and woody vegetation, ERDC/CHL HETN-II-3, US Army Corps of Engineers, p 1–7
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献