Physics-informed deep learning framework to model intense precipitation events at super resolution

Author:

Teufel B.ORCID,Carmo F.,Sushama L.,Sun L.,Khaliq M. N.,Bélair S.,Shamseldin A.,Kumar D. Nagesh,Vaze J.

Abstract

AbstractPhysical modeling of precipitation at fine (sub-kilometer) spatial scales is computationally very expensive. This study develops a highly efficient framework for this task by coupling deep learning (DL) and physical modeling. This framework is developed and tested using regional climate simulations performed over a domain covering Montreal and adjoining regions, for the summers of 2015–2020, at 2.5 km and 250 m resolutions. The DL framework uses a recurrent approach and considers atmospheric physical processes, such as advection, to generate high-resolution information from low-resolution data, which enables it to recreate fine details and produce temporally consistent fields. The DL framework generates realistic high-resolution precipitation estimates, including intense short-duration precipitation events, which allows it to be applied in engineering problems, such as evaluating the climate resiliency of urban storm drainage systems. The results portray the value of the proposed DL framework, which can be extended to other resolutions, periods, and regions.

Funder

National Research Council of Canada

Canadian Space Agency

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid approach for generating daily 2m temperature of 1km spatial resolution over Iran;Theoretical and Applied Climatology;2024-06-12

2. Scalable GPU-Enabled Creation of Three Dimensional Weather Fronts;Proceedings of the Platform for Advanced Scientific Computing Conference;2024-06-03

3. Statistical‐Physical Adversarial Learning From Data and Models for Downscaling Rainfall Extremes;Journal of Advances in Modeling Earth Systems;2024-06

4. Deep learning modeling framework for multi-resolution streamflow generation;Journal of Water and Climate Change;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3