Abstract
AbstractData assimilation is a powerful tool for directly forecasting tsunami wavefields from the waveforms recorded at dense observational stations like S-Net without the need to know the earthquake source parameters. However, this method requires a high computational load and a quick warning is essential when a tsunami threat is near. We propose a new approach based on a deep predictive coding network for forecasting spatiotemporal tsunami wavefields. Unlike the previous data assimilation method, which continuously computes the wavefield when observed data are available, we use only a short sequence from previously assimilated wavefields to forecast the future wavefield. Since the predictions are computed through matrix multiplication, the future wavefield can be estimated in seconds. We apply the proposed method to simple bathymetry and the 2011 Tohoku tsunami. The results show that our proposed method is very fast (1.6 s for 32 frames of prediction with 1-min interval) and comparable to the previous data assimilation. Therefore, the proposed method is promising for integration with data assimilation to reduce the computational cost.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference39 articles.
1. Baba T, Takahashi N, Kaneda Y (2014) Near-field tsunami amplification factors in the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET). Mar Geophys Res 35:319–325. https://doi.org/10.1007/s11001-013-9189-1
2. Clevert DA, Unterthiner T, Hochreiter S (2016) Fast and accurate deep network learning by exponential linear units (ELUs). In: 4th international conference on learning representations, ICLR 2016—conference track proceedings
3. Fauzi A, Mizutani N (2020) Machine learning algorithms for real-time tsunami inundation forecasting: a case study in Nankai region. Pure Appl Geophys 177:1437–1450. https://doi.org/10.1007/s00024-019-02364-4
4. Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc B Biol Sci 364:1211–1221. https://doi.org/10.1098/rstb.2008.0300
5. Gusman AR, Tanioka Y, Matsumoto H, Iwasaki SI (2009) Analysis of the Tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bull Seismol Soc Am 99:2169–2179. https://doi.org/10.1785/0120080324
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献