Tidal asymmetry and transition in the Singapore Strait revealed by GNSS interferometric reflectometry

Author:

Peng DongjuORCID,Soon Kit Ying,Khoo Victor H. S.,Mulder Evert,Wong Poh Weng,Hill Emma M.

Abstract

AbstractThe Singapore Strait is located at the transition between the dominantly semidiurnal Indian Ocean and the mixed-to-diurnal South China Sea, resulting in complex tidal dynamics. In this work, we use sea-level estimates from two coastal Global Navigation Satellite Systems (GNSS) stations and one tide gauge to study tides and tidal asymmetry in the Strait. We first generate sea-level measurements from GNSS signal-to-noise ratio (SNR) data using the GNSS Interferometric Reflectometry technique, which can estimate sea-surface heights from a coastal GNSS station. Second, we perform tidal harmonic analysis and quantify tidal asymmetry based on the skewness method. Finally, we examine seasonal sea-level changes in the Strait from GNSS SNR data, tide-gauge records and satellite altimetry. Our results reveal an increase in M2 and S2 amplitudes toward the west of the Strait and a decrease in the K1 and O1 amplitudes. Our results also show that tides at the two sites in the east are ebb dominant with asymmetry originating from the O1–K1–M2 triad by astronomical forcing, whereas tidal asymmetry at the site in the west is flood dominant and mainly caused by non-linear interaction of the major tidal constituents. Analysis of seasonal sea-level changes shows that annual amplitudes in the east are around 13.6 cm, and 6.7 cm in the west. A possible explanation for the discrepancy in the amplitudes is the effect of seasonal monsoon winds flowing from the South China Sea.

Funder

Ministry of Education - Singapore

National Research Foundation Singapore

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Caldwell P, Merrifield M, Thompson P (2015) Sea level measured by tide gauges from global oceans–the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset. Centers Environ. Information, Dataset, 10, V5V40S47W

2. Carrere L, Faugère Y, Ablain M (2016) Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis. Ocean Sci 12(3):825–842

3. Codiga DL (2011) Unified tidal analysis and prediction using the UTide Matlab functions. Technical Report 2011–01. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. 59pp. ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf

4. Collins DS, Avdis A, Allison PA, Johnson HD, Hill J, Piggott MD, Hassan MHA, Damit AR (2017) Tidal dynamics and mangrove carbon sequestration during the Oligo-Miocene in the South China Sea. Nat Commun 8(1):1–12

5. Crawford WR (1995) A technique for quality control and selection of tidal harmonic constituents. The International Hydrographic Review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3