Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping

Author:

Zhang Tingyu,Li Yanan,Wang Tao,Wang Huanyuan,Chen Tianqing,Sun Zenghui,Luo Dan,Li Chao,Han Ling

Abstract

AbstractThe losses and damage caused by landslide are countless in the world every year. However, the existing approaches of landslide susceptibility mapping cannot fully meet the requirement of landslide prevention, and further excavation and innovation are also needed. Therefore, the main aim of this study is to develop a novel deep learning model namely landslide net (LSNet) to assess the landslide susceptibility in Hanyin County, China, meanwhile, support vector machine model (SVM) and kernel logistic regression model (KLR) were employed as reference model. The inventory map was generated based on 259 landslides, the training dataset and validation dataset were, respectively, prepared using 70% landslides and the remaining 30% landslides. The variance inflation factor (VIF) was applied to optimize each landslide predisposing factor. Three benchmark indices were used to evaluate the result of susceptibility mapping and area under receiver operating characteristics curve (AUROC) was used to compare the models. Result demonstrated that although the processing speed of LSNet model is the slowest, it still significantly outperformed its corresponding benchmark models with validation dataset, and has the highest accuracy (0.950), precision (0.951), F1 (0.951) and AUROC (0.941), which reflected excellent predictive ability in some degree. The achievements obtained in this study can improve the rapid response capability of landslide prevention for Hanyin County.

Funder

fundamental research funds for the central universities

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Shaanxi Province Enterprises Talent Innovation Striving to Support the Plan

Inner scientific research project of Shaanxi Land Engineering Construction Group

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3