Author:
Zhang Tingyu,Li Yanan,Wang Tao,Wang Huanyuan,Chen Tianqing,Sun Zenghui,Luo Dan,Li Chao,Han Ling
Abstract
AbstractThe losses and damage caused by landslide are countless in the world every year. However, the existing approaches of landslide susceptibility mapping cannot fully meet the requirement of landslide prevention, and further excavation and innovation are also needed. Therefore, the main aim of this study is to develop a novel deep learning model namely landslide net (LSNet) to assess the landslide susceptibility in Hanyin County, China, meanwhile, support vector machine model (SVM) and kernel logistic regression model (KLR) were employed as reference model. The inventory map was generated based on 259 landslides, the training dataset and validation dataset were, respectively, prepared using 70% landslides and the remaining 30% landslides. The variance inflation factor (VIF) was applied to optimize each landslide predisposing factor. Three benchmark indices were used to evaluate the result of susceptibility mapping and area under receiver operating characteristics curve (AUROC) was used to compare the models. Result demonstrated that although the processing speed of LSNet model is the slowest, it still significantly outperformed its corresponding benchmark models with validation dataset, and has the highest accuracy (0.950), precision (0.951), F1 (0.951) and AUROC (0.941), which reflected excellent predictive ability in some degree. The achievements obtained in this study can improve the rapid response capability of landslide prevention for Hanyin County.
Funder
fundamental research funds for the central universities
Natural Science Foundation of Shaanxi Province
National Natural Science Foundation of China
Shaanxi Province Enterprises Talent Innovation Striving to Support the Plan
Inner scientific research project of Shaanxi Land Engineering Construction Group
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献