Effects of the interplanetary magnetic field y component on the dayside aurora

Author:

Liou K.ORCID,Mitchell E.

Abstract

Abstract A dawn–dusk asymmetry in many high-latitude ionospheric and magnetospheric phenomena, including the aurora, can be linked to the east–west (y) component of the interplanetary magnetic field (IMF). Owing to the scarcity of observations in the Southern Hemisphere, most of the previous findings are associated with the Northern Hemisphere. It has long been suspected that if the IMF By component also produces a dawn–dusk asymmetry and/or a mirror image in the Southern Hemisphere as predicted by some theories. The present study explores the effect of the IMF By component on the dayside aurora from both hemispheres by analyzing the auroral emission data from the Global UltraViolet scanning spectrograph Imager on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission spacecraft from 2002 to 2007. The data set comprises 28,774 partial images of the northern hemispheric oval and 29,742 partial images of the southern hemispheric oval, allowing for a statistical analysis. It is found that even though auroras in different regions of the dayside oval respond differently to the orientation of the IMF By component, their responses are opposite between the two hemispheres. For example, at ~ 1400–1600 MLT in the Northern Hemisphere, where the so-called 1500 MLT auroral hot spots occur, peak auroral energy flux is larger for negative IMF By comparing to positive IMF By. The response is reversed in the Southern Hemisphere. The present study also suggests that the total energy flux does not change with the IMF By orientation change. This result is consistent with a larger (smaller) convection vortex in the postnoon sector for IMF By < 0 (By > 0) resulting from anti-parallel merging.

Funder

National Science Foundation

AFOSR

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3