Seismogenic structures along the deformation front from onshore to offshore SW Taiwan

Author:

Wu Wen-NanORCID,Lin Jing-Yi,Doo Wen-Bin,Lo Chung-Liang,Hsu Shu-Kun

Abstract

AbstractAccurately imaging seismogenic structures is crucial for seismic hazard assessment. This is especially important around the deformation front (DF) region off SW Taiwan, where seismic potential is high but the fault structure and seismic activity are still poorly understood. Here, we present a comprehensive delineation of seismogenic structures along the onshore and offshore DF of SW Taiwan, utilizing hypocenter relocations and first-motion focal mechanism solutions from January 1991 to March 2019. Five distinctive seismogenic structures are delineated. Particularly, the energetic seismic activity initialled after the 2017 Mw5.3 Tainan earthquake and migrated northeastward along the western side of the DF. The offshore trace of the DF could serve as a boundary delimiting the seismic activity driven by the flexural stress of the subducted Eurasia Plate to the west of the DF. This observation could constrain the magnitude estimation of future earthquakes offshore SW Taiwan. Meanwhile, the areas with higher seismic moment release are located near the DF rather than known faults, indicating that the DF may dominate the seismic moment release. However, further study is warranted into the intricate relationship among seismic strain variation, the structure of DF, and seismic activity to further understand the seismic potential. Our first-motion focal mechanism solutions show that several earthquakes in SW Taiwan were characterized by P-axis orientations parallel to the strike of the Taiwan orogeny. Those events are preferably explained by the lateral compression induced by the ongoing collision between the Eurasia and Philippine Sea plates.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3