Author:
Barakat Nada A.,Rasmy Salwa A.,Hosny Alaa El-Dien M. S.,Kashef Mona T.
Abstract
Abstract
Background
Reports are available on cross-resistance between antibiotics and biocides. We evaluated the effect of povidone-iodine (PVP-I) and propanol-based mecetronium ethyl sulphate (PBM) on resistance development, antibiotics cross-resistance, and virulence in Staphylococcus aureus.
Methods
The minimum inhibitory concentration (MIC) of PVP-I and PBM were determined against S. aureus ATCC 25923 using the agar-dilution method. Staphylococcus aureus ATCC 25923 was subjected to subinhibitory concentrations of the tested biocides in ten consecutive passages followed by five passages in a biocide-free medium; MIC was determined after each passage and after the fifth passage in the biocide-free medium. The developed resistant mutant was tested for cross-resistance to different antibiotics using Kirby-Bauer disk diffusion method. Antibiotic susceptibility profiles as well as biocides’ MIC were determined for 97 clinical S. aureus isolates. Isolates were categorized into susceptible and resistant to the tested biocides based on MIC distribution pattern. The virulence of the biocide-resistant mutant and the effect of subinhibitory concentrations of biocides on virulence (biofilm formation, hemolysin activity, and expression of virulence-related genes) were tested.
Results
PVP-I and PBM MIC were 5000 μg/mL and 664 μg/mL. No resistance developed to PVP-I but a 128-fold increase in PBM MIC was recorded, by repeated exposure. The developed PBM-resistant mutant acquired resistance to penicillin, cefoxitin, and ciprofloxacin. No clinical isolates were PVP-I-resistant while 48.5% were PBM-resistant. PBM-resistant isolates were more significantly detected among multidrug-resistant isolates. PVP-I subinhibitory concentrations (¼ and ½ of MIC) completely inhibited biofilm formation and significantly reduced hemolysin activity (7% and 0.28%, respectively). However, subinhibitory concentrations of PBM caused moderate reduction in biofilm activity and non-significant reduction in hemolysin activity. The ½ MIC of PVP-I significantly reduced the expression of hla, ebps, eno, fib, icaA, and icaD genes. The virulence of the biocide-resistant mutant was similar to that of parent strain.
Conclusion
PVP-I is a highly recommended antiseptic for use in healthcare settings to control the evolution of high-risk clones. Exposure to PVP-I causes no resistance-development risk in S. aureus, with virulence inhibition by subinhibitory concentrations. Also, special protocols need to be followed during PBM use in hospitals to avoid the selection of resistant strains.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference69 articles.
1. The Centers for Disease Control and Prevention (CDC). Infographics: antibiotic resistance the global threat. https://www.cdc.gov/globalhealth/infographics/antibiotic-resistance/antibiotic_resistance_global_threat.htm#_edn2. Accessed 21 Feb 2022.
2. World Health Organization (WHO). New report calls for urgent action to avert antimicrobial resistance crisis. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. Accessed 21 Feb 2022.
3. Ali NE, Morsi SS, Elgohary EA. Association between antibiotics and disinfectants resistance profiles among Acinetobacter baumannii isolates in Zagazig university hospitals. Life Sci J. 2014;11(10):1–8.
4. Daniel SA, Shawky MS, Omar HMG, Abou-Shleib HM, El-Nakeeb MA. Antibiotic resistance and its association with biocide susceptibilities among microbial isolates in an Egyptian hospital. Int Arab J Antimicrob Agents. 2014;4(4):1–11.
5. Sheldon AT Jr. Antiseptic ‘resistance’: real or perceived threat? Clin Infect Dis. 2005;40(11):1650–6.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献