Geographical information system and spatial–temporal statistics for monitoring infectious agents in hospital: a model using Klebsiella pneumoniae complex

Author:

da Silva Priscila Pinho,da Silva Fabiola A.,Rodrigues Caio Augusto Santos,Souza Leonardo Passos,de Lima Elisangela Martins,Pereira Maria Helena B.,Candella Claudio Neder,de Oliveira Alves Marcio Zenaide,Lourenço Newton D.,Tassinari Wagner S.,Barcellos Christovam,Gomes Marisa Zenaide RibeiroORCID,Dutra Vitoria Pinson Ruggi,da Silva Maxuel Cassiano,Tonhá João Pedro Silva,de Mello Luciana Sênos,Castro Murillo Marçal,Mathuiy Yann Rodrigues,da Silva Machado Amanda Aparecida,

Abstract

Abstract Background The emergence and spread of antimicrobial resistance and infectious agents have challenged hospitals in recent decades. Our aim was to investigate the circulation of target infectious agents using Geographic Information System (GIS) and spatial–temporal statistics to improve surveillance and control of healthcare-associated infection and of antimicrobial resistance (AMR), using Klebsiella pneumoniae complex as a model. Methods A retrospective study carried out in a 450-bed federal, tertiary hospital, located in Rio de Janeiro. All isolates of K. pneumoniae complex from clinical and surveillance cultures of hospitalized patients between 2014 and 2016, identified by the use of Vitek-2 system (BioMérieux), were extracted from the hospital's microbiology laboratory database. A basic scaled map of the hospital’s physical structure was created in AutoCAD and converted to QGis software (version 2.18). Thereafter, bacteria according to resistance profiles and patients with carbapenem-resistant K. pneumoniae (CRKp) complex were georeferenced by intensive and nonintensive care wards. Space–time permutation probability scan tests were used for cluster signals detection. Results Of the total 759 studied isolates, a significant increase in the resistance profile of K. pneumoniae complex was detected during the studied years. We also identified two space–time clusters affecting adult and paediatric patients harbouring CRKp complex on different floors, unnoticed by regular antimicrobial resistance surveillance. Conclusions In-hospital GIS with space–time statistical analysis can be applied in hospitals. This spatial methodology has the potential to expand and facilitate early detection of hospital outbreaks and may become a new tool in combating AMR or hospital-acquired infection.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3