Author:
Khoshbakht Reza,Kabiri Mona,Neshani Alireza,Khaksari Mohammad Navid,Sadrzadeh Sayyed Majid,Mousavi Seyed Mohammad,Ghazvini Kiarash,Ghavidel Mahdis
Abstract
Abstract
Background
The coronavirus disease 2019 seems to change antibiotic resistance pattern. Certain conditions in the Covid-19 era may be contributing to the rise of antimicrobial resistance (AMR). Due to the limited information on the impact of Covid-19 on antimicrobial resistance (AMR), the purpose of this research was to investigate the trend in antimicrobial resistance changes of E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in Hasheminezhad hospital. This hospital was a Corona center in Mashhad at the onset of this epidemic.
Methods
1672 clinical samples were collected between January 21, 2020 and January 30, 2022from patients hospitalized at Hasheminezhad Hospital in Mashhad, Conventional microbiological procedures for identifying gram-negative bacteria and antibiotic susceptibility testing were used, according to the clinical and laboratory standards institute (CLSI) 2021. The two years of the pandemic, from the initial stage of the outbreak until the 6th peak, (January 2020 to and January 2022) were divided into 9 periods according to the seasons.
Results
Highest resistance rates were seen in E. coli (615 samples), K. pneumoniae (351 samples), P. aeruginosa (362 samples) and A. baumannii (344 samples) to Ampicillin (89.6%), Ampicillin (98%), Imipenem (91.8%), and Ceftazidime (94.6%), respectively. The largest change in antibiotic resistance was seen between Summer 2020 and Summer 2021 for K. pneumoniae with about a 30% rise in antibiotic resistance to Ceftriaxone.
Conclusions
All 4 species evaluated in this study, have shown rising AMR rates during the first year of the pandemic in the northeast of Iran. This study revealed that E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii strains in Northern Iran have a higher level of antibiotic resistance than what was measured in similar studies conducted before the pandemic. This will further restrict treatment choices and jeopardize global public health.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference20 articles.
1. WHO. Coronavirus metrics. https://covid19.who.int/.
2. Clancy CJ, Buehrle DJ, Nguyen MH. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC-Antimicrobial Resistance. 2020;2(3):dlaa049.
3. Rawson TM, Moore LS, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71(9):2459–68.
4. Monnet DL, Harbarth S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Eurosurveillance. 2020;25(45):2001886.
5. Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340.