Droplets generated from toilets during urination as a possible vehicle of carbapenem-resistant Klebsiella pneumoniae

Author:

Arena Fabio,Coda Anna Rita Daniela,Meschini Valentina,Verzicco Roberto,Liso Arcangelo

Abstract

Abstract Background In the health care setting, infection control actions are fundamental for containing the dissemination of multidrug-resistant bacteria (MDR). Carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (CR-KP), can spread among patients, although the dynamics of transmission are not fully known. Since CR-KP is present in wastewater and microorganisms are not completely removed from the toilet bowl by flushing, the risk of transmission in settings where toilets are shared should be addressed. We investigated whether urinating generates droplets that can be a vehicle for bacteria and explored the use of an innovative foam to control and eliminate this phenomenon. Methods To study droplet formation during urination, we set up an experiment in which different geometrical configurations of toilets could be reproduced and customized. To demonstrate that droplets can mobilize bacteria from the toilet bowl, a standard ceramic toilet was contaminated with a KPC-producing Klebsiella pneumoniae ST101 isolate. Then, we reproduced urination and attached culture dishes to the bottom of the toilet lid for bacterial colony recovery with and without foam. Results Rebound droplets invariably formed, irrespective of the geometrical configuration of the toilet. In microbiological experiments, we demonstrated that bacteria are always mobilized from the toilet bowl (mean value: 0.11 ± 0.05 CFU/cm2) and showed that a specific foam layer can completely suppress mobilization. Conclusions Our study demonstrated that droplets generated from toilets during urination can be a hidden source of CR-KP transmission in settings where toilets are shared among colonized and noncolonized patients.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Reference31 articles.

1. World Health Organization. Antimicrobial resistance: global report on surveillance 2014. Available from: https://apps.who.int/iris/handle/10665/112642.

2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66.

3. No time to wait: securing the future from drug-resistant infections. Report to the secretary-general of the united nations. April 2019. Available from: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf?ua=1.

4. Antibiotic resistance threats in the united states. 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.

5. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3):e00181-e219.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3