Abstract
Abstract
Background
Vancomycin-resistant enterococci (VRE) are a serious antimicrobial resistant threat in the healthcare setting. We assessed the cost-effectiveness of VRE screening and isolation for patients at high-risk for colonisation on a general medicine ward compared to no VRE screening and isolation from the healthcare payer perspective.
Methods
We developed a microsimulation model using local data and VRE literature, to simulate a 20-bed general medicine ward at a tertiary-care hospital with up to 1000 admissions, approximating 1 year. Primary outcomes were accrued over the patient’s lifetime, discounted at 1.5%, and included expected health outcomes (VRE colonisations, VRE infections, VRE-related bacteremia, and deaths subsequent to VRE infection), quality-adjusted life years (QALYs), healthcare costs, and incremental cost-effectiveness ratio (ICER). Probabilistic sensitivity analysis (PSA) and scenario analyses were conducted to assess parameter uncertainty.
Results
In our base-case analysis, VRE screening and isolation prevented six healthcare-associated VRE colonisations per 1000 admissions (6/1000), 0.6/1000 VRE-related infections, 0.2/1000 VRE-related bacteremia, and 0.1/1000 deaths subsequent to VRE infection. VRE screening and isolation accrued 0.0142 incremental QALYs at an incremental cost of $112, affording an ICER of $7850 per QALY. VRE screening and isolation practice was more likely to be cost-effective (> 50%) at a cost-effectiveness threshold of $50,000/QALY. Stochasticity (randomness) had a significant impact on the cost-effectiveness.
Conclusion
VRE screening and isolation can be cost-effective in majority of model simulations at commonly used cost-effectiveness thresholds, and is likely economically attractive in general medicine settings. Our findings strengthen the understanding of VRE prevention strategies and are of importance to hospital program planners and infection prevention and control.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference42 articles.
1. Government of Canada. Canadian Antimicrobial Resistance Surveillance System 2017 Report [Internet]. 2017 [cited 2018 Apr 1]. Available from:
https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2017-report-executive-summary.html#fn3
2. Johnstone J, Chen C, Rosella L, Adomako K, Policarpio ME, Lam F, et al. Patient- and hospital-level predictors of vancomycin-resistant Enterococcus (VRE) bacteremia in Ontario, Canada. Am J Infect Control. 2018;46(11):1266–71.
3. Lloyd-Smith P, Younger J, Lloyd-Smith E, Green H, Leung V, Romney MG. Economic analysis of vancomycin-resistant enterococci at a Canadian hospital: assessing attributable cost and length of stay. J Hosp Infect. 2013;85(1):54–9.
4. Siegel JD, Rhinehart E, Jackson M, Chiarello L, Gordon SM, Harrell LJ, et al. 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control. 2007;35:S65–164.
5. Cookson BD, Macrae MB, Barrett SP, Brown DFJ, Chadwick C, French GL, et al. Guidelines for the control of glycopeptide-resistant enterococci in hospitals *. J Hosp Infect. 2006;62:6–21.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献