Risk prediction models to guide antibiotic prescribing: a study on adult patients with uncomplicated upper respiratory tract infections in an emergency department

Author:

Wong Joshua Guoxian,Aung Aung-Hein,Lian Weixiang,Lye David Chien,Ooi Chee-Kheong,Chow AngelaORCID

Abstract

Abstract Background Appropriate antibiotic prescribing is key to combating antimicrobial resistance. Upper respiratory tract infections (URTIs) are common reasons for emergency department (ED) visits and antibiotic use. Differentiating between bacterial and viral infections is not straightforward. We aim to provide an evidence-based clinical decision support tool for antibiotic prescribing using prediction models developed from local data. Methods Seven hundred-fifteen patients with uncomplicated URTI were recruited and analysed from Singapore’s busiest ED, Tan Tock Seng Hospital, from June 2016 to November 2018. Confirmatory tests were performed using the multiplex polymerase chain reaction (PCR) test for respiratory viruses and point-of-care test for C-reactive protein. Demographic, clinical and laboratory data were extracted from the hospital electronic medical records. Seventy percent of the data was used for training and the remaining 30% was used for validation. Decision trees, LASSO and logistic regression models were built to predict when antibiotics were not needed. Results The median age of the cohort was 36 years old, with 61.2% being male. Temperature and pulse rate were significant factors in all 3 models. The area under the receiver operating curve (AUC) on the validation set for the models were similar. (LASSO: 0.70 [95% CI: 0.62–0.77], logistic regression: 0.72 [95% CI: 0.65–0.79], decision tree: 0.67 [95% CI: 0.59–0.74]). Combining the results from all models, 58.3% of study participants would not need antibiotics. Conclusion The models can be easily deployed as a decision support tool to guide antibiotic prescribing in busy EDs.

Funder

National Healthcare Group

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3