The COVID-19 pandemic and N95 masks: reusability and decontamination methods

Author:

Peters Alexandra,Palomo Rafael,Ney Hervé,Lotfinejad Nasim,Zingg Walter,Parneix Pierre,Pittet Didier

Abstract

Abstract Background With the current SARS-CoV-2 pandemic, many healthcare facilities are lacking a steady supply of masks worldwide. This emergency situation warrants the taking of extraordinary measures to minimize the negative health impact from an insufficient supply of masks. The decontamination, and reuse of healthcare workers’ N95/FFP2 masks is a promising solution which needs to overcome several pitfalls to become a reality. Aim The overall aim of this article is to provide the reader with a quick overview of the various methods for decontamination and the potential issues to be taken into account when deciding to reuse masks. Ultraviolet germicidal irradiation (UVGI), hydrogen peroxide, steam, ozone, ethylene oxide, dry heat and moist heat have all been methods studied in the context of the pandemic. The article first focuses on the logistical implementation of a decontamination system in its entirety, and then aims to summarize and analyze the different available methods for decontamination. Methods In order to have a clear understanding of the research that has already been done, we conducted a systematic literature review for the questions: what are the tested methods for decontaminating N95/FFP2 masks, and what impact do those methods have on the microbiological contamination and physical integrity of the masks? We used the results of a systematic review on the methods of microbiological decontamination of masks to make sure we covered all of the recommended methods for mask reuse. To this systematic review we added articles and studies relevant to the subject, but that were outside the limits of the systematic review. These include a number of studies that performed important fit and function tests on the masks but took their microbiological outcomes from the existing literature and were thus excluded from the systematic review, but useful for this paper. We also used additional unpublished studies and internal communication from the University of Geneva Hospitals and partner institutions. Results This paper analyzes the acceptable methods for respirator decontamination and reuse, and scores them according to a number of variables that we have defined as being crucial (including cost, risk, complexity, time, etc.) to help healthcare facilities decide which method of decontamination is right for them. Conclusion We provide a resource for healthcare institutions looking at making informed decisions about respirator decontamination. This informed decision making will help to improve infection prevention and control measures, and protect healthcare workers during this crucial time. The overall take home message is that institutions should not reuse respirators unless they have to. In the case of an emergency situation, there are some safe ways to decontaminate them.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Reference83 articles.

1. Degesys NF, et al. Correlation between N95 extended use and reuse and fit failure in an emergency department. JAMA. 2020;324:94–6.

2. Coronavirus Disease 2019 (COVID-19). Centers for disease control and prevention; 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.html.

3. Public letter from Jeff Rose at the Battelle Memorial Institute to the Food and Drug Administration. FDA (29.03.2020). https://dph.georgia.gov/document/document/battelle-eua/download.

4. Modalités de retraitement des masques N95/FFP2 en cas de pénurie. Swiss Society of Hospital Sterilization. 30.04.2020. http://www.sssh.ch/covid-19/masques-ffp2n95/.

5. Heimbuch B, Harnish D. Research to mitigate a shortage of respiratory protection devices during public health emergencies. Albuquerque: Applied Research Associates Inc; 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3