Using adenosine triphosphate bioluminescence level monitoring to identify bacterial reservoirs during two consecutive Enterococcus faecium and Staphylococcus capitis nosocomial infection outbreaks at a neonatal intensive care unit

Author:

Kim Ye Ji,Hong Min Yeong,Kang Hyun Mi,Yum Sook Kyung,Youn Young Ah,Lee Dong-Gun,Kang Jin Han

Abstract

Abstract Introduction This study aimed to assess the role of adenosine triphosphate (ATP) bioluminescence level monitoring for identifying reservoirs of the outbreak pathogen during two consecutive outbreaks caused by Enterococcus faecium and Staphylococcus capitis at a neonatal intensive care unit (NICU). The secondary aim was to evaluate the long-term sustainability of the infection control measures employed one year after the final intervention measures. Methods Two outbreaks occurred during a 53-day period in two disconnected subunits, A and B, that share the same attending physicians. ATP bioluminescence level monitoring, environmental cultures, and hand cultures from healthcare workers (HCW) in the NICU were performed. Pulsed-field gel electrophoresis (PFGE) typing was carried out to investigate the phylogenetic relatedness of the isolated strains. Results Four cases of E. faecium sepsis (patients A-8, A-7, A-9, B-8) and three cases of S. capitis sepsis (patients A-16, A-2, B-8) were diagnosed in six preterm infants over a span of 53 days. ATP levels remained high on keyboard 1 of the main station (2076 relative light unit [RLU]/100 cm2) and the keyboard of bed A-9 (4886 RLU/100 cm2). By guidance with the ATP results, environmental cultures showed that E. faecium isolated from the patients and from the main station’s keyboard 1 were genotypically indistinguishable. Two different S. capitis strains caused sepsis in three patients. A total 77.8% (n = 7/9) of S. capitis cultured from HCW's hands were genotypically indistinguishable to the strains isolated from A-2 and A-16. The remaining 22.2% (n = 2/9) were genotypically indistinguishable to patient B-8. Three interventions to decrease the risk of bacterial transmission were applied, with the final intervention including a switch of all keyboards and mice in NICU-A and B to disinfectable ones. Post-intervention prospective monitoring up to one year showed a decrease in blood culture positivity (P = 0.0019) and catheter-related blood stream infection rate (P = 0.016) before and after intervention. Conclusion ATP monitoring is an effective tool in identifying difficult to disinfect areas in NICUs. Non-medical devices may serve as reservoirs of pathogens causing nosocomial outbreaks, and HCWs' hands contribute to bacterial transmission in NICUs.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3