Antimicrobial use among adult inpatients at hospital sites within the Canadian Nosocomial Infection Surveillance Program: 2009 to 2016
-
Published:2020-02-13
Issue:1
Volume:9
Page:
-
ISSN:2047-2994
-
Container-title:Antimicrobial Resistance & Infection Control
-
language:en
-
Short-container-title:Antimicrob Resist Infect Control
Author:
Rudnick Wallis, , Science Michelle, Thirion Daniel J. G., Abdesselam Kahina, Choi Kelly B., Pelude Linda, Amaratunga Kanchana, Comeau Jeannette L., Dalton Bruce, Delport Johan, Dhami Rita, Embree Joanne, Émond Yannick, Evans Gerald, Frenette Charles, Fryters Susan, German Greg, Grant Jennifer M., Happe Jennifer, Katz Kevin, Kibsey Pamela, Kosar Justin, Langley Joanne M., Lee Bonita E., Lefebvre Marie-Astrid, Leis Jerome A., McGeer Allison, Neville Heather L., Simor Andrew, Slayter Kathryn, Suh Kathryn N., Tse-Chang Alena, Weiss Karl, Conly JohnORCID
Abstract
Abstract
Background
Antimicrobial resistance is a growing threat to the world’s ability to prevent and treat infections. Links between quantitative antibiotic use and the emergence of bacterial resistance are well documented. This study presents benchmark antimicrobial use (AMU) rates for inpatient adult populations in acute-care hospitals across Canada.
Methods
In this retrospective surveillance study, acute-care adult hospitals participating in the Canadian Nosocomial Infection Surveillance Program (CNISP) submitted annual AMU data on all systemic antimicrobials from 2009 to 2016. Information specific to intensive care units (ICUs) and non-ICU wards were available for 2014–2016. Data were analyzed using defined daily doses (DDD) per 1000 patient days (DDD/1000pd).
Results
Between 2009 and 2016, 16–18 CNISP adult hospitals participated each year and provided their AMU data (22 hospitals participated in ≥1 year of surveillance; 11 in all years). From 2009 to 2016, there was a significant reduction in use (12%) (from 654 to 573 DDD/1000pd, p = 0.03). Fluoroquinolones accounted for the majority of this decrease (47% reduction in combined oral and intravenous use, from 129 to 68 DDD/1000pd, p < 0.002). The top five antimicrobials used in 2016 were cefazolin (78 DDD/1000pd), piperacillin-tazobactam (53 DDD/1000pd), ceftriaxone (49 DDD/1000pd), vancomycin (combined oral and intravenous use was 44 DDD/1000pd; 7% of vancomycin use was oral), and ciprofloxacin (combined oral and intravenous use: 42 DDD/1000pd). Among the top 10 antimicrobials used in 2016, ciprofloxacin and metronidazole use decreased significantly between 2009 and 2016 by 46% (p = 0.002) and 26% (p = 0.002) respectively. Ceftriaxone (85% increase, p = 0.0008) and oral amoxicillin-clavulanate (140% increase, p < 0.0001) use increased significantly but contributed only a small component (8.6 and 5.0%, respectively) of overall use.
Conclusions
This study represents the largest collection of dispensed antimicrobial use data among inpatients in Canada to date. Between 2009 and 2016, there was a significant 12% decrease in AMU, driven primarily by a 47% decrease in fluoroquinolone use. Modest absolute increases in parenteral ceftriaxone and oral amoxicillin-clavulanate use were noted but contributed a small amount of total AMU. Ongoing national surveillance is crucial for establishing benchmarks and antimicrobial stewardship guidelines.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference36 articles.
1. Cosgrove S, Sakoulas G, Perencevich E, Schwaber M, Karchmer A, Carmeli Y. Comparison of mortality associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53–9. 2. Reed SD, Friedman JY, Engemann JJ, Griffiths R, Anstrom K, Kaye K, Stryjewski M, Szczech L, Reller L, Corey G, Schulman K, Fowler V. Costs and outcomes among hemodialysis-dependent patients with methicillin-resistant or methicillin-susceptible Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol. 2005;26(2):175–83. 3. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler V, Bronstein M, Trivette S, Briggs J, Sexton D, Kaye K. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis. 2003;36(5):592–8. 4. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe D, Bassetti M, Losito A, Del Bono V, Corcione S, Maiuro G, Tedeschi S, Celani L, Cardellino C, Spanu T, Marchese A, Ambretti S, Cauda R, Viscotli C, Viale P. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–43. 5. Morata L, , Cobos-Trigueros N, Martinez J, Soriano Á, Almela M, Marco F, Sterzik H, Nunez R, Hernandez C, Mensa J. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2012; 56(9): 4833–4837.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|