Development of machine learning models for the detection of surgical site infections following total hip and knee arthroplasty: a multicenter cohort study

Author:

Wu Guosong,Cheligeer Cheligeer,Southern Danielle A.,Martin Elliot A.,Xu Yuan,Leal Jenine,Ellison Jennifer,Bush Kathryn,Williamson Tyler,Quan Hude,Eastwood Cathy A.

Abstract

Abstract Background Population based surveillance of surgical site infections (SSIs) requires precise case-finding strategies. We sought to develop and validate machine learning models to automate the process of complex (deep incisional/organ space) SSIs case detection. Methods This retrospective cohort study included adult patients (age ≥ 18 years) admitted to Calgary, Canada acute care hospitals who underwent primary total elective hip (THA) or knee (TKA) arthroplasty between Jan 1st, 2013 and Aug 31st, 2020. True SSI conditions were judged by the Alberta Health Services Infection Prevention and Control (IPC) program staff. Using the IPC cases as labels, we developed and validated nine XGBoost models to identify deep incisional SSIs, organ space SSIs and complex SSIs using administrative data, electronic medical records (EMR) free text data, and both. The performance of machine learning models was assessed by sensitivity, specificity, positive predictive value, negative predictive value, F1 score, the area under the receiver operating characteristic curve (ROC AUC) and the area under the precision–recall curve (PR AUC). In addition, a bootstrap 95% confidence interval (95% CI) was calculated. Results There were 22,059 unique patients with 27,360 hospital admissions resulting in 88,351 days of hospital stay. This included 16,561 (60.5%) TKA and 10,799 (39.5%) THA procedures. There were 235 ascertained SSIs. Of them, 77 (32.8%) were superficial incisional SSIs, 57 (24.3%) were deep incisional SSIs, and 101 (42.9%) were organ space SSIs. The incidence rates were 0.37 for superficial incisional SSIs, 0.21 for deep incisional SSIs, 0.37 for organ space and 0.58 for complex SSIs per 100 surgical procedures, respectively. The optimal XGBoost models using administrative data and text data combined achieved a ROC AUC of 0.906 (95% CI 0.835–0.978), PR AUC of 0.637 (95% CI 0.528–0.746), and F1 score of 0.79 (0.67–0.90). Conclusions Our findings suggest machine learning models derived from administrative data and EMR text data achieved high performance and can be used to automate the detection of complex SSIs.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Reference29 articles.

1. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–208.

2. Canadian Surgical Site Infection Prevention Audit Month February 2016. 2016:3. https://www.patientsafetyinstitute.ca/en/toolsResources/Documents/SSI%20Audit%202016_Recap%20Report%20EN.pdf

3. Adeyemi A, Trueman P. Economic burden of surgical site infections within the episode of care following joint replacement. J Orthop Surg Res. 2019;14(1):1–9.

4. Annual epidemiological report for 2018–2020. 2023. Healthcare-associated infections: surgical site infections. https://www.ecdc.europa.eu/sites/default/files/documents/Healthcare-associated%20infections%20-%20surgical%20site%20infections%202018-2020.pdf

5. Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS. 2007;89(4):780–5.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3