Virus matrix interference on assessment of virucidal activity of high-touch surfaces designed to prevent hospital-acquired infections

Author:

Walji Sadru-Dean,Bruder Mark R.,Aucoin Marc G.ORCID

Abstract

Abstract Objectives/purpose High-touch surfaces are a critical reservoir in the spread of nosocomial infections. Although disinfection and infection control protocols are well developed, they lack the ability to passively reduce the pathogenic load of high-touch surfaces. Copper and its alloys have been suggested as a surface that exhibit continuous biocidal effects. Antimicrobial studies on these surfaces are prevalent, while virucidal studies are not as well explored. The goal of this study was to first determine the virucidal activity of a copper–nickel–zinc alloy and to then examine the effect of soiling and virus preparation on virucidal activity. Methods A baculovirus vector was used as an easily quantifiable model of an infectious enveloped animal cell virus. Droplets containing virus were deposited on surfaces and allowed to stay wet using humidity control or were dried onto the surface. Virus was then recovered from the surface and assayed for infectivity. To examine how the composition of the droplet affected the survival of the virus, 3 different soiling conditions were tested. The first two were recommended by the United States Environmental Protection Agency and the third consisted of cell debris resulting from virus amplification. Results A copper–nickel–zinc alloy was shown to have strong virucidal effects for an enveloped virus. Copper, nickel, and zinc ions were all shown to leach from the alloy surface and are the likely cause of virucidal activity by this surface. Virucidal activity was achieved under moderate soiling but lost under high soiling generated by routine virus amplification procedures. The surface was able to repeatably inactivate dried virus droplets under moderate soiling conditions, but unable to do so for virus droplets kept wet using high humidity. Conclusion Ion leaching was associated with virucidal activity in both wet and dried virus conditions. Soiling protected the virus by quenching metal ions, and not by inhibiting leaching. The composition of the solution containing virus plays a critical role in evaluating the virucidal activity of surfaces and surface coatings.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3