Development of a Weighted-Incidence Syndromic Combination Antibiogram (WISCA) to guide the choice of the empiric antibiotic treatment for urinary tract infection in paediatric patients: a Bayesian approach

Author:

Barbieri ElisaORCID,Bottigliengo Daniele,Tellini Matteo,Minotti Chiara,Marchiori Mara,Cavicchioli Paola,Gregori Dario,Giaquinto Carlo,Da Dalt Liviana,Donà Daniele

Abstract

Abstract Background To evaluate the ability of Weighted-Incidence Syndromic Combination Antibiograms (WISCA) to inform the selection of empirical antibiotic regimens for suspected paediatric community-acquired urinary tract infections. Methods Data were collected from outpatients (< 15 years) accessing the emergency rooms of Padua University-Hospital and Mestre Dell' Angelo-Hospital (Venice) between January 1st, 2016, and December 31st, 2018. WISCAs were developed by estimating the coverage of eight regimens using a Bayesian hierarchical model adjusted for age, sex, and previous antibiotic treatment or renal/urological comorbidities. Results 385 of 620 urine culture requests were included in the model analysis. The most frequently observed bacterium was E. coli (85% and 87%, Centre A and B). No centre effect on coverage estimates was found, and data were successfully pooled together. Coverage ranged from 77.8% (Co-trimoxazole) to 97.6% (Carbapenems). Complex cases and males had significantly lower odds of being covered by a regimen than non-complex cases and females (odds ratio (OR) 0.49 [95% HDI, 0.38–0.65], and OR: 0.73 [95% HDIs, 0.56–0.96] respectively). Children aged 3–5 years had lower odds of being covered by a regimen than other age groups, except for neonates. Conclusions The developed WISCAs provide highly informative estimates on coverage patterns overcoming the limitation of combination antibiograms and expanding the framework of previous Bayesian WISCA algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3