Silica nanoparticles with encapsulated DNA (SPED) – a novel surrogate tracer for microbial transmission in healthcare

Author:

Scotoni Manuela,Koch Julian,Julian Timothy R.,Clack Lauren,Pitol Ana K.,Wolfensberger Aline,Grass Robert N.,Sax HugoORCID

Abstract

Abstract Background The increase in antimicrobial resistance is of worldwide concern. Surrogate tracers attempt to simulate microbial transmission by avoiding the infectious risks associated with live organisms. We evaluated silica nanoparticles with encapsulated DNA (SPED) as a new promising surrogate tracer in healthcare. Methods SPED and Escherichia coli were used to implement three experiments in simulation rooms and a microbiology laboratory in 2017–2018. Experiment 1 investigated the transmission behaviour of SPED in a predefined simulated patient-care scenario. SPED marked with 3 different DNA sequences (SPED1-SPED3) were introduced at 3 different points of the consecutive 13 touch sites of a patient-care scenario that was repeated 3 times, resulting in a total of 288 values. Experiment 2 evaluated SPED behaviour following hand cleaning with water and soap and alcohol-based handrub. Experiment 3 compared transfer dynamics of SPED versus E. coli in a laboratory using a gloved finger touching two consecutive sites on a laminate surface after a first purposefully contaminated site. Results Experiment 1: SPED adhesiveness on bare skin after a hand-to-surface exposure was high, leading to a dissemination of SPED1–3 on all consecutive surface materials with a trend of decreasing recovery rates, also reflecting touching patterns in concordance with contaminated fingers versus palms. Experiment 2: Hand washing with soap and water resulted in a SPED reduction of 96%, whereas hand disinfection led to dispersal of SPED from the palm to the back of the hand. Experiment 3: SPED and E. coli concentration decreased in parallel with each transmission step – with SPED showing a trend for less reduction and variability. Conclusions SPED represent a convenient and safe instrument to simulate pathogen spread by contact transmission simultaneously from an infinite number of sites. They can be further developed as a central asset for successful infection prevention in healthcare.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Reference36 articles.

1. ECDC. Annual Epidemiological Report 2014. Antimicrobial resistance and healthcare-associated infections. Stockholm, Sweden: European Centre for Disease Prevention and Control; 2015. https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-annual-epidemiological-report.pdf. Accessed 07 Aug 2020.

2. Harbarth S, Sax H, Gastmeier P. The preventable proportion of nosocomial infections: an overview of published reports. J Hosp Infect. 2003;54(4):258–66 quiz 321.

3. WHO. Report on the Endemic Burden of Healthcare-Associated Infection Worldwide. Geneva, Switzerland: World Health Organization; 2011. https://apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdf. Accessed 05 Apr 2018.

4. Pittet D, Allegranzi B, Sax H, Dharan S, Pessoa-Silva CL, Donaldson L, et al. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect Dis. 2006;6(10):641–52.

5. Wolfensberger A, Clack L, Kuster SP, Passerini S, Mody L, Chopra V, et al. Transfer of pathogens to and from patients, healthcare providers, and medical devices during care activity-a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(9):1093–107.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3