Abstract
Abstract
Background
The relationship between antibiotic use and antimicrobial resistance varies with cultural, socio-economic, and environmental factors. We examined these relationships in Kibera, an informal settlement in Nairobi—Kenya, characterized by high population density, high burden of respiratory disease and diarrhea.
Methods
Two-hundred households were enrolled in a 5-month longitudinal study. One adult (≥ 18 years) and one child (≤ 5 years) participated per household. Biweekly interviews (n = 1516) that included questions on water, sanitation, hygiene, and antibiotic use in the previous two weeks were conducted, and 2341 stool, 2843 hand swabs and 1490 drinking water samples collected. Presumptive E. coli (n = 34,042) were isolated and tested for susceptibility to nine antibiotics.
Results
Eighty percent of presumptive E. coli were resistant to ≥ 3 antibiotic classes. Stool isolates were resistant to trimethoprim (mean: 81%), sulfamethoxazole (80%), ampicillin (68%), streptomycin (60%) and tetracycline (55%). Ninety-seven households reported using an antibiotic in at least one visit over the study period for a total of 144 episodes and 190 antibiotic doses. Enrolled children had five times the number of episodes reported by enrolled adults (96 vs. 19). Multivariable linear mixed-effects models indicated that children eating soil from the household yard and the presence of informal hand-washing stations were associated with increased numbers of antimicrobial-resistant bacteria (counts increasing by 0·27–0·80 log10 and 0·22–0·51 log10 respectively, depending on the antibiotic tested). Rainy conditions were associated with reduced carriage of antimicrobial-resistant bacteria (1·19 to 3·26 log10 depending on the antibiotic tested).
Conclusions
Antibiotic use provided little explanatory power for the prevalence of antimicrobial resistance. Transmission of resistant bacteria in this setting through unsanitary living conditions likely overwhelms incremental changes in antibiotic use. Under such circumstances, sanitation, hygiene, and disease transmission are the limiting factors for reducing the prevalence of resistant bacteria.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference38 articles.
1. World Health Organization, WHO. Antimicrobial resistance: global report on surveillance. 2014. https://doi.org/10.1007/s13312-014-0374-3.
2. Bygbjerg IC. Double burden of noncommunicable and infectious diseases in developing countries. Science. 2012;337:1499–501. https://doi.org/10.1126/science.1223466.
3. Feikin DR, Olack B, Bigogo GM, Audi A, Cosmas L, Aura B, et al. The burden of common infectious disease syndromes at the clinic and household level from population-based surveillance in rural and urban Kenya. PLoS ONE. 2011;6:e16085. https://doi.org/10.1371/journal.pone.0016085.
4. Riley LW, Ko AI, Unger A, Reis MG. Slum health: diseases of neglected populations. BMC Int Health Hum Rights. 2007;7:2. https://doi.org/10.1186/1472-698X-7-2.
5. United Nations Human Settlements Programme (UN-Habitat). World Cities Report 2016: Urbanization and Development—Emerging Futures. Nairobi; 2016. http://wcr.unhabitat.org/wp-content/uploads/2017/02/WCR-2016-Full-Report.pdf. Accessed 13 Jul 2017.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献