Postcranial anatomy of Besanosaurus leptorhynchus (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio (Italy/Switzerland), with implications for reconstructing the swimming styles of Triassic ichthyosaurs

Author:

Bindellini GabrieleORCID,Wolniewicz Andrzej S.,Miedema Feiko,Dal Sasso Cristiano,Scheyer Torsten M.

Abstract

AbstractBesanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was originally described on the basis of a single complete fossil specimen excavated near Besano (Italy). However, a recent taxonomic revision and re-examination of the cranial osteology allowed for the assignment of five additional specimens to the taxon. Here, we analyse, describe and discuss the postcranial anatomy of Besanosaurus leptorhynchus in detail. The size of the specimens examined herein ranged from slightly more than one meter to eight meters. Overall, several diagnostic character states for this taxon are proposed, demonstrating a mosaic of plesiomorphic and derived features. This is best exemplified by the limbs, which show very rounded elements in the forelimbs, and pedal phalanges with retained rudimentary shafts. We suggest that the widely spaced phalanges in the forefins of Besanosaurus leptorhynchus were embedded in a fibrocartilage-rich connective tissue, like in modern cetaceans. We also review the similarities of Besanosaurus with Pessopteryx and Pessosaurus, allowing us to conclude that Besanosaurus is not a junior synonym of either of the two taxa. Lastly, to test the swimming capabilities of Besanosaurus leptorhynchus, we expanded on a previously published study focussing on reconstructing the swimming styles of ichthyosaurs. Besanosaurus leptorhynchus was found to possess a peculiar locomotory mode, somewhat intermediate between anguilliform swimmers, such as Cymbospondylus and Utatsusaurus, and some shastasaur-grade (e.g., Guizhouichthyosaurus) and early-diverging euichthyosaurian (e.g., Californosaurus) ichthyosaurs. Based on our results, we furthermore suggest that mixosaurids acquired their characteristic body profile (dorsal fin and forefins that are distinctly enlarged compared to the hindfins) independently and convergently to the one that later appeared in Parvipelvia. Moreover, the different swimming styles inferred for Cymbospondylus, Mixosauridae, and Besanosaurus strengthen the earlier hypothesis of niche partitioning among these three distinct ichthyosaur taxa from the Besano Formation.

Funder

National Natural Science Foundation of China

Bekker Programme of the Polish National Agency for Academic Exchange

Swiss National Science Foundation

Publisher

Springer Science and Business Media LLC

Reference102 articles.

1. Benton, M. J., Zhang, Q., Hu, S., Chen, Z. Q., Wen, W., Liu, J., Huang, J., Zhou, C., Xie, T., Tong, J., & Choo, B. (2013). Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth Sciences Review, 125, 199–243.

2. Bernasconi, S. M. (1991). Geochemical and microbial controls on dolomite formation and organic matter production/preservation in anoxic environments: a case study from the Middle Triassic Grenzbitumenzone, Southern Alps (Ticino, Switzerland). Dr. Phil. thesis, Swiss Federal Institute of Technology Zürich, Switzerland, 196 pp.

3. Bernasconi, S. M. (1994). Geochemical and microbial controls on dolomite formation in anoxic environments: A case study from the Middle Triassic (Ticino, Switzerland). Contributions to Sedimentology, 19, 1–109.

4. Bernasconi, S. M., & Riva, A. (1993). Organic geochemistry and depositional environment of a hydrocarbon source rock: the Middle Triassic Grenzbitumenzone Formation, Southern Alps, Italy/Switzerland. In A. M. Spencer (Ed.), Generation, Accumulation and Production of Europe’s Hydrocarbons (Vol. 3, pp. 179–190). Springer.

5. Bindellini, G., Balini, M., Teruzzi, G., & Dal Sasso, C. (2019). Ammonoid and Daonella zonation of the Sasso Caldo quarry (Besano Formation, Middle Triassic). In: Strati 2019, 3rd International Congress on Stratigraphy—ST2.4 Ammonoids in stratigraphy, Abstract book, 87.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3