Report on ammonoid soft tissue remains revealed by computed tomography

Author:

Hoffmann R.ORCID,Morón-Alfonso D.,Klug C.,Tanabe K.

Abstract

AbstractFindings of ammonoid soft tissues are extremely rare compared to the rich fossil record of ammonoid conchs ranging from the Late Devonian to the Cretaceous/Paleogene boundary. Here, we apply the computed-tomography approach to detect ammonoid soft tissue remains in well-preserved fossils from the Early Cretaceous (early Albian) of NE-Germany of Proleymeriella. The ammonites were found in glauconitic–phosphatic sandstone boulders. Analyses of the high-resolution Ct-data revealed the presence of cameral sheets, the siphuncular tube wall, and the siphuncle itself. The siphuncle is a long, segmented soft tissue that begins at the rear end of the body chamber and comprises blood vessels. Chemical analyses using energy-dispersive spectroscopy (EDS) showed that all preserved soft tissues were phosphatized and are now composed of fluorapatite. The same holds true for preserved shell remains that locally show the nacreous microstructure. We provide a short description of these soft tissue remains and briefly discuss the taphonomic pathway.

Publisher

Springer Science and Business Media LLC

Subject

Paleontology

Reference75 articles.

1. Allison, P. A. (1988). Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia, 21, 403–410. https://doi.org/10.1111/j.1502-3931.1988.tb01769.x

2. Baets, K. D., Landman, N. H., & Tanabe, K. (2015). Ammonoid embryonic development. In C. Klug, D. Korn, K. De Baets, I. Kruta, & R. H. Mapes (Eds.), Ammonoid paleobiology: From anatomy to ecology. (pp. 113–205). Springer. https://doi.org/10.1007/978-94-017-9630-9_5

3. Bandel, K., & Von Boletzky, S. (1979). A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger, 21, 313–354

4. Barskov, I. S. (1990). Internal structure of siphuncle of the Late Jurassic ammonite Virgatites virgatus. Trans Paleont Inst, 243, 127–132

5. Baturin, G. N. (1999). Hypothesis of phosphogenesis and ocean environment. Lithology and Mineral Resources. Litol Polezn Iskop, 34, 451–472

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3