Early Pliocene otolith assemblages from the outer-shelf environment reveal the establishment of mesopelagic fish fauna over 3 million years ago in southwestern Taiwan

Author:

Lin Chien-HsiangORCID,Wu Siao-Man,Lin Chia-Yen,Chien Chi-Wei

Abstract

AbstractUnderstanding the diversity of deep-sea fish fauna based on otoliths in the tropical and subtropical West Pacific has been limited, creating a significant knowledge gap regarding regional and temporal variations in deep-sea fish fauna. To address this gap, we collected a total of 122 bulk sediment samples from the Lower Pliocene Gutingkeng Formation in southwestern Taiwan to reconstruct the otolith-based fish fauna. Using planktonic foraminiferal biostratigraphy, we determined the age of the samples to be 5.6 to 3.1 Ma. A total of 8314 otoliths were assigned to 64 different taxa from 33 families, including the discovery of one new genus, Gutingichthys gen. nov., and three new species: Benthosema duanformis sp. nov., Benthosema parafibulatum sp. nov., and Gutingichthys changi sp. nov. Comparisons with other regional otolith-based assemblages highlighted the exceptional diversity of our collection, making it the most diverse fossil fish fauna reported from Taiwan to date. Otolith diversity analysis revealed very few taxa were dominant in the assemblage, particularly the mesopelagic Myctophidae, with a wide variety of minor taxa. The co-occurrence of shallow-water elements suggests episodic storm events as a potential source. The predominance of deep-sea and oceanic fishes indicated an outer-shelf to upper slope environment, resembling the modern outer-shelf and upper slope fish fauna in the region. Our findings suggest an early establishment and persistent presence of the mesopelagic fish community since the Early Pliocene. Further investigations of the Upper Miocene and Pleistocene sections of the Gutingkeng Formation would provide valuable insights into the evolution of deep-sea fish fauna in the area.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

Subject

Paleontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3