Human activity prediction using saliency-aware motion enhancement and weighted LSTM network

Author:

Weng ZhengkuiORCID,Li Wuzhao,Jin Zhipeng

Abstract

AbstractIn recent years, great progress has been made in recognizing human activities in complete image sequences. However, predicting human activity earlier in a video is still a challenging task. In this paper, a novel framework named weighted long short-term memory network (WLSTM) with saliency-aware motion enhancement (SME) is proposed for video activity prediction. First, a boundary-prior based motion segmentation method is introduced to use shortest geodesic distance in an undirected weighted graph. Next, a dynamic contrast segmentation strategy is proposed to segment the moving object in a complex environment. Then, the SME is constructed to enhance the moving object by suppressing irrelevant background in each frame. Moreover, an effective long-range attention mechanism is designed to further deal with the long-term dependency of complex non-periodic activities by automatically focusing more on the semantic critical frames instead of processing all sampled frames equally. Thus, the learned weights can highlight the discriminative frames and reduce the temporal redundancy. Finally, we evaluate our framework on the UT-Interaction and sub-JHMDB datasets. The experimental results show that WLSTM with SME statistically outperforms a number of state-of-the-art methods on both datasets.

Funder

Natural Science Foundation of Zhejiang Province

Jiaxing Public Welfare Research Project

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Rifle and Sniper Detection Using Pose Estimation and CNN With BiLSTMs;Practice, Progress, and Proficiency in Sustainability;2024-02-09

2. TricP: A Novel Approach for Human Activity Recognition Using Tricky Predator Optimization Approach Based on Inception and LSTM;2024

3. Human Activity Recognition using ShuffleNetV2 Model;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

4. HRTransNet: HRFormer-Driven Two-Modality Salient Object Detection;IEEE Transactions on Circuits and Systems for Video Technology;2023-02

5. BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network;Multimedia Tools and Applications;2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3