Recognition of printed small texture modules based on dictionary learning

Author:

Yu Lifang,Cao Gang,Tian HuaweiORCID,Cao Peng,Zhang Zhenzhen,Shi Yun Q.

Abstract

AbstractQuick Response (QR) codes are designed for information storage and high-speed reading applications. To store additional information, Two-Level QR (2LQR) codes replace black modules in standard QR codes with specific texture patterns. When the 2LQR code is printed, texture patterns are blurred and their sizes are smaller than$$0.5{\mathrm{cm}}^{2}$$ 0.5 cm 2 . Recognizing small-sized blurred texture patterns is challenging. In original 2LQR literature, recognition of texture patterns is based on maximizing the correlation between print-and-scanned texture patterns and the original digital ones. When employing desktop printers with large pixel extensions and low-resolution capture devices, the recognition accuracy of texture patterns greatly reduces. To improve the recognition accuracy under this situation, our work presents a dictionary learning based scheme to recognize printed texture patterns. To our best knowledge, it is the first attempt to use dictionary learning to promote the recognition accuracy of printed texture patterns. In our scheme, dictionaries for all kinds of texture patterns are learned from print-and-scanned texture modules in the training stage. And these learned dictionaries are employed to represent each texture module in the testing stage (extracting process) to recognize their texture pattern. Experimental results show that our proposed algorithm significantly reduces the recognition error of small-sized printed texture patterns.

Funder

National Natural Science Foundation of China

national natural science foundation of china

Beijing Municipal Commission of Education

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Reference46 articles.

1. ISO. Information Technology Automatic Identification and Data Capture Techniques- QR Code 2005 Bar Code Symbology Speciification. 2006, Standard IEC 18004.

2. Y.-J. Chiang, P.-Y. Lin, R.-Z. Wang, Y.-H. Chen, Blind QR code steganographic approach based upon error correction capability. KSII Trans. Internet Inf. Syst. 7, 2527–2543 (2013)

3. Buczynski, D. MSB/LSB tutorial. Available online: http://www.buczynski.com/Proteus/msblsb.html. Accessed on Mar 9 2021.

4. S. Katzenbeisser, F. Petitolas, Information hiding techniques for steganography and digital watermaking. EDPACS the EDP Audit Control & Security Newsletter 28, 1–2 (1999)

5. X. Zhang, S. Wang, Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10, 783 (2006)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3