OSDDY: embedded system-based object surveillance detection system with small drone using deep YOLO

Author:

Madasamy Kaliappan,Shanmuganathan Vimal,Kandasamy Vijayalakshmi,Lee Mi YoungORCID,Thangadurai Manikandan

Abstract

AbstractComputer vision is an interdisciplinary domain for object detection. Object detection relay is a vital part in assisting surveillance, vehicle detection and pose estimation. In this work, we proposed a novel deep you only look once (deep YOLO V3) approach to detect the multi-object. This approach looks at the entire frame during the training and test phase. It followed a regression-based technique that used a probabilistic model to locate objects. In this, we construct 106 convolution layers followed by 2 fully connected layers and 812 × 812 × 3 input size to detect the drones with small size. We pre-train the convolution layers for classification at half the resolution and then double the resolution for detection. The number of filters of each layer will be set to 16. The number of filters of the last scale layer is more than 16 to improve the small object detection. This construction uses up-sampling techniques to improve undesired spectral images into the existing signal and rescaling the features in specific locations. It clearly reveals that the up-sampling detects small objects. It actually improves the sampling rate. This YOLO architecture is preferred because it considers less memory resource and computation cost rather than more number of filters. The proposed system is designed and trained to perform a single type of class called drone and the object detection and tracking is performed with the embedded system-based deep YOLO. The proposed YOLO approach predicts the multiple bounding boxes per grid cell with better accuracy. The proposed model has been trained with a large number of small drones with different conditions like open field, and marine environment with complex background.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Reference47 articles.

1. S. Agarwal, J.O.D. Terrail, F. Jurie, Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks. arXiv:1807.04606 (2018)

2. K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, S.W. Baik, Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6, 18174–18183 (2018)

3. P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

4. J. Zhang, K. Huang, Y. Yu, T. Tan, in 2011 IEEE Computer Vision and Pattern Recognition (CVPR), CO, USA, Colorado Springs. Boosted local structured HOG-LBP for object localization (2011), pp. 1393–1400

5. Y. Zhang, S. Rho, S. Liu, D. Zhao, R. Ji, F. Jiang, 3D object retrieval with multi-feature collaboration and bipartite graph matching. Neurocomputing 195, 40–49 (2016)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3