Abstract
AbstractA high-quality underwater image is essential to many industrial and academic applications in the field of image processing and analysis. Unfortunately, underwater images frequently demonstrate poor visual quality of low contrast, blurring, darkness, and color diminishing. This paper develops a new underwater image restoration framework that consists of four major phases: color correction, local contrast enhancement, haze diminution, and global contrast enhancement. A self-adaptive mechanism is designed to guide the image to either processing route based on a red deficiency measure. In the color correction phase, the histogram in each RGB channel is transformed for balancing the image color. An adaptive histogram equalization method is exploited to enhance the local contrast in the CIE-Lab color space. The dark channel prior haze removal scheme is modified for dehazing in the haze diminution phase. Finally, a histogram stretching method is applied in the HSI color space to make the image more natural. A wide variety of underwater images with various scenarios were employed to evaluate this new restoration algorithm. Experimental results demonstrated the effectiveness of our image restoration scheme as compared with state-of-the-art methods. It was suggested that our framework dramatically eliminated the haze and improved visual interpretation of underwater images.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Information Systems,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献