Edge-aware nonlinear diffusion-driven regularization model for despeckling synthetic aperture radar images

Author:

Bua AnthonyORCID,Kapyela Goodluck,Massawe Libe,Maiseli Baraka

Abstract

AbstractSpeckle noise corrupts synthetic aperture radar (SAR) images and limits their applications in sensitive scientific and engineering fields. This challenge has attracted several scholars because of the wide demand of SAR images in forestry, oceanography, geology, glaciology, and topography. Despite some significant efforts to address the challenge, an open-ended research question remains to simultaneously suppress speckle noise and to restore semantic features in SAR images. Therefore, this work establishes a diffusion-driven nonlinear method with edge-awareness capabilities to restore corrupted SAR images while protecting critical image features, such as contours and textures. The proposed method incorporates two terms that promote effective noise removal: (1) high-order diffusion kernel; and (2) fractional regularization term that is sensitive to speckle noise. These terms have been carefully designed to ensure that the restored SAR images contain stronger edges and well-preserved textures. Empirical results show that the proposed model produces content-rich images with higher subjective and objective values. Furthermore, our model generates images with unnoticeable staircase and block artifacts, which are commonly found in the classical Perona–Malik and Total variation models.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3