PointPCA: point cloud objective quality assessment using PCA-based descriptors

Author:

Alexiou EvangelosORCID,Zhou Xuemei,Viola Irene,Cesar Pablo

Abstract

AbstractPoint clouds denote a prominent solution for the representation of 3D photo-realistic content in immersive applications. Similarly to other imaging modalities, quality predictions for point cloud contents are vital for a wide range of applications, enabling trade-off optimizations between data quality and data size in every processing step from acquisition to rendering. In this work, we focus on use cases that consider human end-users consuming point cloud contents and, hence, we concentrate on visual quality metrics. In particular, we propose a set of perceptually relevant descriptors based on principal component analysis (PCA) decomposition, which is applied to both geometry and texture data for full-reference point cloud quality assessment. Statistical features are derived from these descriptors to characterize local shape and appearance properties for both a reference and a distorted point cloud. The extracted statistical features are subsequently compared to provide corresponding predictions of visual quality for the distorted point cloud. As part of our method, a learning-based approach is proposed to fuse these individual predictors to a unified perceptual score. We validate the accuracy of the individual predictors, as well as the unified quality scores obtained after regression against subjectively annotated datasets, showing that our metric outperforms state-of-the-art solutions. Insights regarding design decisions are provided through exploratory studies, evaluating the performance of our metric under different parameter configurations, attribute domains, color spaces, and regression models. A software implementation of the proposed metric is made available at the following link: https://github.com/cwi-dis/pointpca.

Funder

HORIZON EUROPE Digital, Industry and Space

Stichting voor de Technische Wetenschappen

Publisher

Springer Science and Business Media LLC

Reference61 articles.

1. S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P.A. Chou, R.A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A.M. Tourapis, V. Zakharchenko, Emerging MPEG standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 9(1), 133–148 (2019). https://doi.org/10.1109/JETCAS.2018.2885981

2. T. Ebrahimi, S. Foessel, F. Pereira, P. Schelkens, JPEG Pleno: toward an efficient representation of visual reality. IEEE Multimedia 23(4), 14–20 (2016). https://doi.org/10.1109/MMUL.2016.64

3. ISO/IEC 23090-5: Information technology–Coded representation of immersive media–Part 5: Visual volumetric video-based coding (V3C) and video-based point cloud compression (V-PCC). International Organization for Standardization (2021)

4. ISO/IEC 23090-9: Information technology–Coded representation of immersive media–Part 9: Geometry-based point cloud compression. International Organization for Standardization (2023)

5. P. Astola, L.A. Silva Cruz, E.A. Da Silva, T. Ebrahimi, P.G. Freitas, A. Gilles, K.-J. Oh, C. Pagliari, F. Pereira, C. Perra et al., Jpeg pleno: Standardizing a coding framework and tools for plenoptic imaging modalities (ICT Discoveries, ITU Journal, 2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3