Image completion via transformation and structural constraints

Author:

Chen Qiaochuan,Li Guangyao,Xiao Qingguo,Xie Li,Xiao Mang

Abstract

AbstractImage completion is an approach to fill a damaged region (hole) in an image. In this study, we adopt a novel method which can repair a target region with structural constraints in an architectural scene. An objective function that consists of three terms is proposed to solve the image completion problem. In color term, we compute a parameterized transformation model using detected plane parameters and measure the distance between the target patch and transformed source patch. This model helps to extend the patch search space and find an optimal solution. To improve the patch matching accuracy, we add a guide term that includes structure term and consistency term. The structure term encourages sampling patches along the structural direction, and the consistency term is used to maintain the texture consistency. Considering the color deviation between patches, we add a gradient term into a framework that can solve more challenging problems. Compared with previous methods, the proposed method has good performance in preserving global structure and reasonably estimating perspective distortions. Moreover, we obtain acceptable results in natural scenes. The experimental results illustrate that this novel method is a potential tool for image completion.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ensemble-based stegware detection system for information hiding malware attacks;Journal of Ambient Intelligence and Humanized Computing;2023-02-24

2. Hole Filling Using Dominant Colour Plane for CNN-Based Stereo Matching;Advances in Intelligent Systems and Computing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3