Retinal vessel segmentation with constrained-based nonnegative matrix factorization and 3D modified attention U-Net

Author:

Yu Yang,Zhu Hongqing

Abstract

AbstractDue to the complex morphology and characteristic of retinal vessels, it remains challenging for most of the existing algorithms to accurately detect them. This paper proposes a supervised retinal vessels extraction scheme using constrained-based nonnegative matrix factorization (NMF) and three dimensional (3D) modified attention U-Net architecture. The proposed method detects the retinal vessels by three major steps. First, we perform Gaussian filter and gamma correction on the green channel of retinal images to suppress background noise and adjust the contrast of images. Then, the study develops a new within-class and between-class constrained NMF algorithm to extract neighborhood feature information of every pixel and reduce feature data dimension. By using these constraints, the method can effectively gather similar features within-class and discriminate features between-class to improve feature description ability for each pixel. Next, this study formulates segmentation task as a classification problem and solves it with a more contributing 3D modified attention U-Net as a two-label classifier for reducing computational cost. This proposed network contains an upsampling to raise image resolution before encoding and revert image to its original size with a downsampling after three max-pooling layers. Besides, the attention gate (AG) set in these layers contributes to more accurate segmentation by maintaining details while suppressing noises. Finally, the experimental results on three publicly available datasets DRIVE, STARE, and HRF demonstrate better performance than most existing methods.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Reference38 articles.

1. O. Ronneberger, P. Fischer, T. Brox, in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). U-Net: convolutional networks for biomedical image segmentation, (2015), pp. 234–241.

2. N. P. Singh, R. Srivastava, Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Prog. Biomed.129:, 40–50 (2016).

3. J. De, H. Li, L. Cheng, Tracing retinal vessel trees by transductive inference. BMC Bioinformatics. 15(1), 20 (2014).

4. N. Memari, M. I. B. Saripan, S. Mashohor, M. Moghbel, Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J. Med. Biol. Eng.39(5), 713–731 (2019).

5. D. Kaba, A. G. Salazar-Gonzalez, Y. Li, X. Liu, A. Serag, in Proceedings of the Health Information Science. Segmentation of retinal blood vessels using Gaussian mixture models and expectation maximisation, (2013), pp. 105–112.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3