Real-time embedded object detection and tracking system in Zynq SoC

Author:

Ji Qingbo,Dai Chong,Hou ChangboORCID,Li Xun

Abstract

AbstractWith the increasing application of computer vision technology in autonomous driving, robot, and other mobile devices, more and more attention has been paid to the implementation of target detection and tracking algorithms on embedded platforms. The real-time performance and robustness of algorithms are two hot research topics and challenges in this field. In order to solve the problems of poor real-time tracking performance of embedded systems using convolutional neural networks and low robustness of tracking algorithms for complex scenes, this paper proposes a fast and accurate real-time video detection and tracking algorithm suitable for embedded systems. The algorithm combines the object detection model of single-shot multibox detection in deep convolution networks and the kernel correlation filters tracking algorithm, what is more, it accelerates the single-shot multibox detection model using field-programmable gate arrays, which satisfies the real-time performance of the algorithm on the embedded platform. To solve the problem of model contamination after the kernel correlation filters algorithm fails to track in complex scenes, an improvement in the validity detection mechanism of tracking results is proposed that solves the problem of the traditional kernel correlation filters algorithm not being able to robustly track for a long time. In order to solve the problem that the missed rate of the single-shot multibox detection model is high under the conditions of motion blur or illumination variation, a strategy to reduce missed rate is proposed that effectively reduces the missed detection. The experimental results on the embedded platform show that the algorithm can achieve real-time tracking of the object in the video and can automatically reposition the object to continue tracking after the object tracking fails.

Funder

National key research and development program of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature refinement with DBO: optimizing RFRC method for autonomous vehicle detection;Intelligent Service Robotics;2024-03-12

2. Survey on object detection in VLSI architecture through deep learning;AIP Conference Proceedings;2024

3. Cow detection and tracking system utilizing multi-feature tracking algorithm;Scientific Reports;2023-10-13

4. Object tracking using local structural information and energy minimization;The Journal of Supercomputing;2023-09-26

5. Design and Realization of Real-Time Motion Target Detection System Based on ZYNQ;2023 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3