Abstract
AbstractIn this paper, a synthetic aperture radar (SAR) image formation simulator is used to objectively evaluate the parameter selection within the digital spotlighting process. Specifically, recommendations for the filter type and filter order of the low-pass filters used in the range and azimuth decimation processes within the digital spotlighting algorithm are determined to maximize image quality and minimize computational cost. Results show that a finite impulse response low-pass filter with a Taylor $(\overline {n}=5)$(n¯=5) window applied provides the highest image quality over a wide range of filter orders and decimation factors. Additionally, a linear relationship between filter length and decimation factor is found.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Information Systems,Signal Processing
Reference14 articles.
1. M. Soumekh, in Proceedings of 1st International Conference on Image Processing, vol. 1. Digital spotlighting and coherent subaperture image formation for stripmap synthetic aperture radar (IEEE, 1994), pp. 476–480.
2. A. Dallinger, S. Schelkshorn, J. Detlefsen, Efficient ω-k-algorithm for circular SAR and cylindrical reconstruction areas. Adv. Radio Sci. 4.B. 3:, 85–91 (2006).
3. L. Nguyen, et al., Enhancement of backprojection SAR imagery using digital spotlighting preprocessing (IEEE, 2004).
4. M. Soumekh, et al., Signal processing of wide bandwidth and wide beamwidth P-3 SAR data. IEEE Trans. Aerospace Electr. Syst.37(4), 1122–1141 (2001).
5. E. J. Balster, F. A. Scarpino, A. M. Kordik, K. L. Hill, Synthetic aperture radar imaging simulator for pulse envelope evaluation. J. Appl. Remote Sensing. 11(4), 046022 (2017).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comparison of algorithms to suppress noise in GF-3 FSII SAR images;Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022);2023-02-23