An optimized capsule neural networks for tomato leaf disease classification

Author:

Abouelmagd Lobna M.ORCID,Shams Mahmoud Y.ORCID,Marie Hanaa SalemORCID,Hassanien Aboul EllaORCID

Abstract

AbstractPlant diseases have a significant impact on leaves, with each disease exhibiting specific spots characterized by unique colors and locations. Therefore, it is crucial to develop a method for detecting these diseases based on spot shape, color, and location within the leaves. While Convolutional Neural Networks (CNNs) have been widely used in deep learning applications, they suffer from limitations in capturing relative spatial and orientation relationships. This paper presents a computer vision methodology that utilizes an optimized capsule neural network (CapsNet) to detect and classify ten tomato leaf diseases using standard dataset images. To mitigate overfitting, data augmentation, and preprocessing techniques were employed during the training phase. CapsNet was chosen over CNNs due to its superior ability to capture spatial positioning within the image. The proposed CapsNet approach achieved an accuracy of 96.39% with minimal loss, relying on a 0.00001 Adam optimizer. By comparing the results with existing state-of-the-art approaches, the study demonstrates the effectiveness of CapsNet in accurately identifying and classifying tomato leaf diseases based on spot shape, color, and location. The findings highlight the potential of CapsNet as an alternative to CNNs for improving disease detection and classification in plant pathology research.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of deep learning-based methods for non-destructive evaluation of agricultural products;Biosystems Engineering;2024-09

2. Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization;Frontiers in Plant Science;2024-05-17

3. Enhancing Maize Leaf Disease Detection Using Cat Swarm Optimization with Deep Learning Model;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

4. Detection and Categorization of Tomato Plant Diseases using A Convolutional Neural Network;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

5. Classification of Tomato Crop Diseases by utilizing Convolutional Neural Network;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3