Abstract
AbstractExamining the authenticity of images has become increasingly important as manipulation tools become more accessible and advanced. Recent work has shown that while CNN-based image manipulation detectors can successfully identify manipulations, they are also vulnerable to adversarial attacks, ranging from simple double JPEG compression to advanced pixel-based perturbation. In this paper we explore another method of highly plausible attack: printing and scanning. We demonstrate the vulnerability of two state-of-the-art models to this type of attack. We also propose a new machine learning model that performs comparably to these state-of-the-art models when trained and validated on printed and scanned images. Of the three models, our proposed model outperforms the others when trained and validated on images from a single printer. To facilitate this exploration, we create a data set of over 6000 printed and scanned image blocks. Further analysis suggests that variation between images produced from different printers is significant, large enough that good validation accuracy on images from one printer does not imply similar validation accuracy on identical images from a different printer.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Information Systems,Signal Processing
Reference38 articles.
1. Y. Rao, J. Ni, A deep learning approach to detection of splicing and copy-move forgeries in images. In 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016)
2. M. Stamm, K.R. Liu, Blind forensics of contrast enhancement in digital images. In 2008 15th IEEE International Conference on Image Processing (IEEE, 2008), pp. 3112–3115
3. Y. Pengpeng, N. Rongrong, Z. Yao, C. Gang, W. Haorui, Z. Wei, Robust contrast enhancement forensics using convolutional neural networks. CoRR abs/1803.04749 (2018). 1803.04749
4. A. Popescu, H. Farid, Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans. Signal Process. 53, 758–767 (2005). https://doi.org/10.1109/TSP.2004.839932
5. H. Farid, Exposing digital forgeries from jpeg ghosts. IEEE Trans. Inf. Forensics Secur. 4(1), 154–160 (2009)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献