Learning a crowd-powered perceptual distance metric for facial blendshapes

Author:

Cipiloglu Yildiz ZeynepORCID

Abstract

AbstractIt is known that purely geometric distance metrics cannot reflect the human perception of facial expressions. A novel perceptually based distance metric designed for 3D facial blendshape models is proposed in this paper. To develop this metric, comparative evaluations of facial expressions were collected from a crowdsourcing experiment. Then, the weights of a distance metric, based on descriptive features of the models, were optimized to match the results with crowdsourced data, through a metric learning process. The method incorporates perceptual properties such as curvature and visual saliency. A formal analysis of the results proves the high correlation between the metric output and human perception. The effectiveness and success of the proposed metric were also compared to other distance alternatives. The proposed metric will enable intelligent processing of 3D facial blendshapes data in several ways. It will be possible to generate perceptually valid clustering and visualization of 3D facial blendshapes. It will help reduce storage and computational requirements by removing redundant expressions that are perceptually identical from the overall dataset. It can also be used to assist novice animators while creating plausible and expressive facial animations.

Funder

Manisa Celal Bayar University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3