Effects of the salinity-temperature interaction on seed germination and early seedling development: a comparative study of crop and weed species

Author:

Nikolić Nebojša,Ghirardelli Aurora,Schiavon Michela,Masin Roberta

Abstract

Abstract Background Weeds represent a great constraint for agricultural production due to their remarkable adaptability and their ability to compete with crops. Climate change exacerbates the abiotic stresses that plants encounter. Therefore, studying plant responses to adverse conditions is extremely important. Here, the response to saline stress at different temperatures of three weed species (Chenopodium album, Echinochloa crus-galli and Portulaca oleracea) and three crops (maize, soybean and rice) was investigated. Results The germination percentage of soybean notably decreased as salinity and low temperatures increased. In contrast, maize and rice consistently maintained a high germination percentage, particularly when subjected to low salinity levels. Regarding weed species, the germination percentage of C. album was not significantly affected by salinity, but it decreased in E. crus-galli and P. oleracea with increasing salinity. The mean germination time for all species increased with salinity, especially at lower temperatures. This effect was most pronounced for soybean and E. crus-galli. C. album exhibited significant reduction in stem growth with high salinity and high temperatures, while in E. crus-galli stem growth was less reduced under similar conditions. Conclusion This study showed that successful germination under saline stress did not ensure successful early development and emphasizes the species-specific nature of the temperature-salinity interaction, perhaps influenced by intraspecific variability. Increasing salinity levels negatively impacted germination and seedling growth in most species, yet higher temperatures partially alleviated these effects.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference94 articles.

1. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci [Internet]. 2015;22(2):123–31. https://doi.org/10.1016/j.sjbs.2014.12.001.

2. Nadjafi AF, Shabahang J, Damghani AMM. Society of commercial seed technologists (SCST) Association of Official seed analysts Effects of Salinity and temperature on Germination and Seedling Growth of Nine Medicinal Plant Species Technologists (SCST) linked references are available on JSTOR. 2017;32(2):96–107.

3. Liu Y, Zhang S, De Boeck HJ, Hou F. Effects of temperature and salinity on seed germination of three common grass species. Front Plant Sci. 2021;12(December):1–8.

4. Harris BN, Sadras VO, Tester M. A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil. 2010;336(1):377–89.

5. Matthees HL, Thom MD, Gesch RW, Forcella F. Salinity tolerance of germinating alternative oilseeds. Ind Crops Prod. 2018;113:358–67.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3