Precipitation pattern changed the content of non-structural carbohydrates components in different organs of Artemisia ordosica

Author:

He Yingying,Yu Minghan,Ding Guodong,Zhang Fuchong

Abstract

Abstract Background Non-structural carbohydrates (NSC) play a significant role in plant growth and defense and are an important component of carbon cycling in desert ecosystems. However, regarding global change scenarios, it remains unclear how NSCs in desert plants respond to changing precipitation patterns. [Methods] Three precipitation levels (natural precipitation, a 30% reduction in precipitation, and a 30% increase in precipitation) and two precipitation intervals levels (5 and 15 d) were simulated to study NSC (soluble sugar and starch) responses in the dominant shrub Artemisia ordosica. Results Precipitation level and interval interact to affect the NSC (both soluble sugar and starch components) content of A. ordosica. The effect of precipitation on NSC content and its components depended on extended precipitation interval. With lower precipitation and extended interval, soluble sugar content in roots increased and starch content decreased, indicating that A. ordosica adapts to external environmental changes by hydrolyzing root starch into soluble sugars. At 5 d interval, lower precipitation increased the NSC content of stems and especially roots. Conclusions A. ordosica follows the “preferential allocation principle” to preferentially transport NSC to growing organs, which is an adaptive strategy to maintain a healthy physiological metabolism under drought conditions. The findings help understand the adaptation and survival mechanisms of desert vegetation under the changing precipitation patterns and are important in exploring the impact of carbon cycling in desert systems under global environmental change.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference51 articles.

1. Maestre FT, Eldridge DJ, Soliveres S, Sonia Kéfi, Berdugo M. Structure and functioning of dryland ecosystems in a changing world. Annu Rev Ecol Evol Syst. 2016;47:215–37.

2. Zhang WT. Effects of Rainfall Changes and Nitrogen Addition on the unstructured carbohydrate and stoichiometric characteristics of Reaumuria soongorica seedlings. Gansu Agricultural University; 2020.

3. Zhang J, Chen H, Zhang Q. Extreme drought in the recent two decades in northern China resulting from eurasian warming. Clim Dyn. 2019;52:2885–902.

4. Hoover DL, Hajek OL, Smith MD, Wilkins K, Slette IJ, Knapp AK. Compound hydroclimatic extremes in a semi-arid grassland: Drought, deluge, and the carbon cycle. Glob Change Biol. 2022;28:2611–21.

5. IPCC. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3