Population genomics of Zea species identifies selection signatures during maize domestication and adaptation

Author:

Xu Gen,Zhang Xuan,Chen Wenkang,Zhang Renyu,Li Zhi,Wen Weiwei,Warburton Marilyn L.,Li Jiansheng,Li Huihui,Yang Xiaohong

Abstract

Abstract Background Maize (Zea mays L. ssp. mays) was domesticated from teosinte (Zea mays ssp. parviglumis) about 9000 years ago in southwestern Mexico and adapted to a range of environments worldwide. Researchers have depicted the maize domestication and adaptation processes over the past two decades, but efforts have been limited either in sample size or genetic diversity. To better understand these processes, we conducted a genome-wide survey of 982 maize inbred lines and 190 teosinte accessions using over 40,000 single-nucleotide polymorphism markers. Results Population structure, principal component analysis, and phylogenetic trees all confirmed the evolutionary relationship between maize and teosinte, and determined the evolutionary lineage of all species within teosinte. Shared haplotype analysis showed similar levels of ancestral alleles from Zea mays ssp. parviglumis and Zea mays ssp. mexicana in maize. Scans for selection signatures identified 394 domestication sweeps by comparing wild and cultivated maize and 360 adaptation sweeps by comparing tropical and temperate maize. Permutation tests revealed that the public association signals for flowering time were highly enriched in the domestication and adaptation sweeps. Genome-wide association study identified 125 loci significantly associated with flowering-time traits, ten of which identified candidate genes that have undergone selection during maize adaptation. Conclusions In this study, we characterized the history of maize domestication and adaptation at the population genomic level and identified hundreds of domestication and adaptation sweeps. This study extends the molecular mechanism of maize domestication and adaptation, and provides resources for basic research and genetic improvement in maize.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3